14 results on '"Maan SS"'
Search Results
2. Fine structure mapping of the species cytoplasmic (scs) gene in durum. (Collegiate Communications--Graduate)
- Author
-
Simons, KJ, Kianian, SF, Maan, SS, and Gehlhar, SB
- Subjects
Cytoplasm -- Research -- Genetic aspects ,Durum wheat -- Genetic aspects -- Research ,Science and technology ,Genetic aspects ,Research - Abstract
INTRODUCTION A better understanding nuclear-cytoplasmic interactions has direct applications to plant breeding and crop improvement. Understanding nuclear-cytoplasmic interactions and compatibility would permit more extensive use of alien species and more [...]
- Published
- 2001
3. An allelism test for species cytoplasmic specific (scs) genes. (Collegiate Communications--Graduate)
- Author
-
Gehlhar, SB, Kianian, SF, Maan, SS, and Simons, KJ
- Subjects
Wheat -- Genetic aspects -- Research ,Plant cytogenetics -- Research -- Genetic aspects ,Allelomorphism -- Research -- Genetic aspects ,Science and technology ,Research ,Genetic aspects - Abstract
INTRODUCTION Wild related species have been and will be a useful reservoir of genetic diversity in the development of emerging wheat germplasms. Lack of genetic recombination and hybrid sterility are [...]
- Published
- 2001
4. Construction of a genetic linkage map and QTL mapping of fruit quality traits in guava ( Psidium guajava L.).
- Author
-
Maan SS, Brar JS, Mittal A, Gill MIS, Arora NK, Sohi HS, Chhuneja P, Dhillon GS, Singh N, and Thakur S
- Abstract
Guava ( Psidium guajava L.) is an important fruit crop of the Indian sub-continent, with potential for improvements in quality and yield. The goal of the present study was to construct a genetic linkage map in an intraspecific cross between the elite cultivar 'Allahabad Safeda' and the Purple Guava landrace to identify the genomic regions responsible for important fruit quality traits, viz., total soluble solids, titratable acidity, vitamin C, and sugars. This population was phenotyped in field trials (as a winter crop) for three consecutive years, and showed moderate-to-high values of heterogeneity coefficients along with higher heritability (60.0%-97.0%) and genetic-advance-over-mean values (13.23%-31.17%), suggesting minimal environmental influence on the expression of fruit-quality traits and indicating that these traits can be improved by phenotypic selection methods. Significant correlations and strong associations were also detected among fruit physico-chemical traits in segregating progeny. The constructed linkage map consisted of 195 markers distributed across 11 chromosomes, spanning a length of 1,604.47 cM (average inter-loci distance of 8.80 markers) and with 88.00% coverage of the guava genome. Fifty-eight quantitative trait loci (QTLs) were detected in three environments with best linear unbiased prediction (BLUP) values using the composite interval mapping algorithm of the BIP (biparental populations) module. The QTLs were distributed on seven different chromosomes, explaining 10.95%-17.77% of phenotypic variance, with the highest LOD score being 5.96 for qTSS.AS.pau-6.2. Thirteen QTLs detected across multiple environments with BLUPs indicate stability and utility in a future breeding program for guava. Furthermore, seven QTL clusters with stable or common individual QTLs affecting two or more different traits were located on six linkage groups (LGs), explaining the correlation among fruit-quality traits. Thus, the multiple environmental evaluations conducted here have increased our understanding of the molecular basis of phenotypic variation, providing the basis for future high-resolution fine-mapping and paving the way for marker-assisted breeding of fruit-quality traits., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Maan, Brar, Mittal, Gill, Arora, Sohi, Chhuneja, Dhillon, Singh and Thakur.)
- Published
- 2023
- Full Text
- View/download PDF
5. Construction of Genetic Linkage Map and Mapping QTL Specific to Leaf Anthocyanin Colouration in Mapping Population 'Allahabad Safeda' × 'Purple Guava (Local)' of Guava ( Psidium guajava L.).
- Author
-
Sohi HS, Gill MIS, Chhuneja P, Arora NK, Maan SS, and Singh J
- Abstract
In the present investigation, F1 hybrids were developed in guava ( Psidium guajava L.) by crossing high leaf-anthocyanin reflective-index ( ARI 1) content cultivars purple guava (local) 'PG', 'CISH G-1' and low leaf- ARI 1 content cultivar Seedless 'SL' with Allahabad Safeda 'AS'. On the basis of phenotypic observations, high ARI 1 content was observed in the cross 'AS' × 'PG' (0.214). Further, an SSR-markers-based genetic linkage map was developed from a mapping population of 238 F1 individuals derived from cross 'AS' × 'PG'. The linkage map comprised 11 linkage groups (LGs), spanning 1601.7 cM with an average marker interval distance of 29.61 cM between adjacent markers. Five anthocyanin-content related gene-specific markers from apple were tested for parental polymorphism in the genotypes 'AS' and 'PG'. Subsequently, a marker, viz., ' MdMYB 10F1', revealed a strong association with leaf anthocyanin content in the guava mapping population. QTL ( qARI-6-1 ) on LG6 explains much of the variation (PVE = 11.51% with LOD = 4.67) in levels of leaf anthocyanin colouration. This is the first report of amplification/utilization of apple anthocyanin-related genes in guava. The genotypic data generated from the genetic map can be further exploited in future for the enrichment of linkage maps and for identification of complex quantitative trait loci (QTLs) governing economically important fruit quality traits in guava.
- Published
- 2022
- Full Text
- View/download PDF
6. Genetic analysis and molecular mapping of crown rust resistance in common wheat.
- Author
-
Niu Z, Puri KD, Chao S, Jin Y, Sun Y, Steffenson BJ, Maan SS, Xu SS, and Zhong S
- Subjects
- Chromosome Mapping, Crosses, Genetic, Genetic Linkage, Genetic Markers, Genotype, Hordeum genetics, Hordeum microbiology, Microsatellite Repeats, Plant Diseases microbiology, Quantitative Trait Loci, United States, Basidiomycota, Disease Resistance genetics, Genes, Plant, Triticum genetics, Triticum microbiology
- Abstract
This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat. Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.
- Published
- 2014
- Full Text
- View/download PDF
7. High-resolution radiation hybrid map of wheat chromosome 1D.
- Author
-
Kalavacharla V, Hossain K, Gu Y, Riera-Lizarazu O, Vales MI, Bhamidimarri S, Gonzalez-Hernandez JL, Maan SS, and Kianian SF
- Subjects
- Chromosome Breakage, Chromosome Mapping, Expressed Sequence Tags, Polyploidy, Radiation Hybrid Mapping, Chromosomes, Plant genetics, Triticum genetics
- Abstract
Physical mapping methods that do not rely on meiotic recombination are necessary for complex polyploid genomes such as wheat (Triticum aestivum L.). This need is due to the uneven distribution of recombination and significant variation in genetic to physical distance ratios. One method that has proven valuable in a number of nonplant and plant systems is radiation hybrid (RH) mapping. This work presents, for the first time, a high-resolution radiation hybrid map of wheat chromosome 1D (D genome) in a tetraploid durum wheat (T. turgidum L., AB genomes) background. An RH panel of 87 lines was used to map 378 molecular markers, which detected 2312 chromosome breaks. The total map distance ranged from approximately 3,341 cR(35,000) for five major linkage groups to 11,773 cR(35,000) for a comprehensive map. The mapping resolution was estimated to be approximately 199 kb/break and provided the starting point for BAC contig alignment. To date, this is the highest resolution that has been obtained by plant RH mapping and serves as a first step for the development of RH resources in wheat.
- Published
- 2006
- Full Text
- View/download PDF
8. Genetic analysis of the species cytoplasm specific gene (scs d) derived from durum wheat.
- Author
-
Gehlhar SB, Simons KJ, Maan SS, and Kianian SF
- Subjects
- Crosses, Genetic, Cytoplasm genetics, Hybrid Vigor, Genes, Plant genetics, Triticum genetics
- Abstract
The action of species cytoplasm specific (scs) gene(s) can be observed when a durum (Triticum turgidum L.) nucleus is placed in the Aegilops longissimum S. & M. cytoplasm. This alloplasmic combination, (lo) durum, results in nonviable progeny. A scs gene derived from T. timopheevii Zhuk. (scs(ti)) produced compatibility with the (lo) cytoplasm. The resulting hemizygous (lo) scs(ti)- durum line was male sterile and when crossed to normal durum produced a 1:1 ratio of plump, viable (PV) seeds with scs(ti) and shriveled inviable (SIV) seeds without scs(ti). In a systematic characterization of durum lines an unusual line was identified that when crossed to (lo) scs(ti)- produced all PV seeds. When planted these PV seeds segregated at a 1:1 ratio of normal vigor plants (NVPs) and low vigor plants (LVPs). The LVP senescence before full maturity. The NVPs were male sterile and when crossed to common durum lines resulted in all plump seeds that again segregated at a 1:1 ratio of NVPs to LVPs. The crosses of these NVPs to common durum lines resulted in a 1:1 ratio of PV to SIV seeds. This study was extended to 317 individuals segregating for scs(ti) and the new locus, derived from durum wheat (scs(d)), establishing the allelic relationship of these two genes.
- Published
- 2005
- Full Text
- View/download PDF
9. Radiation hybrid mapping of the species cytoplasm-specific (scsae) gene in wheat.
- Author
-
Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Maan SS, and Kianian SF
- Subjects
- Gamma Rays, Genetic Markers, Polymorphism, Restriction Fragment Length, Species Specificity, Chromosomes, Plant genetics, Genes, Plant genetics, Radiation Hybrid Mapping, Triticum genetics
- Abstract
Radiation hybrid (RH) mapping is based on radiation-induced chromosome breakage and analysis of chromosome segment retention or loss using molecular markers. In durum wheat (Triticum turgidum L., AABB), an alloplasmic durum line [(lo) durum] has been identified with chromosome 1D of T. aestivum L. (AABBDD) carrying the species cytoplasm-specific (scsae) gene. The chromosome 1D of this line segregates as a whole without recombination, precluding the use of conventional genome mapping. A radiation hybrid mapping population was developed from a hemizygous (lo) scsae--line using 35 krad gamma rays. The analysis of 87 individuals of this population with 39 molecular markers mapped on chromosome 1D revealed 88 radiation-induced breaks in this chromosome. This number of chromosome 1D breaks is eight times higher than the number of previously identified breaks and should result in a 10-fold increase in mapping resolution compared to what was previously possible. The analysis of molecular marker retention in our radiation hybrid mapping panel allowed the localization of scsae and 8 linked markers on the long arm of chromosome 1D. This constitutes the first report of using RH mapping to localize a gene in wheat and illustrates that this approach is feasible in a species with a large complex genome.
- Published
- 2004
- Full Text
- View/download PDF
10. Molecular cytogenetic characterization of an alloplasmic durum wheat line with a portion of chromosome 1D of Triticum aestivum carrying the scs(ae) gene.
- Author
-
Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Rust JL, Maan SS, and Kianian SF
- Subjects
- Chromosome Mapping, Expressed Sequence Tags, Genetic Markers genetics, In Situ Hybridization, Plants, Genetically Modified, Polymorphism, Restriction Fragment Length, Reproduction genetics, Species Specificity, Chromosomes, Plant genetics, Cytoplasm genetics, Genetic Engineering, Recombination, Genetic genetics, Triticum genetics
- Abstract
Triticum aestivum (2n = 6x = 42, AABBDD) with Triticum longissimum (2n = 2x = 14; S1S1) cytoplasm ((lo) cytoplasm) has normal fertility and plant vigor. However, the nucleus of durum wheat (Triticum turgidum (2n = 4x = 28, AABB)) is incompatible with the T. longissimum cytoplasm, producing non-viable progeny. This incompatibility is alleviated by scs(ae), a species cytoplasm-specific (scs) gene, on the long arm of chromosome 1D (1DL) of common wheat. The hemizygous (lo) durum scs(ae) line is male sterile and is maintained by crossing to normal durum wheat. After pollination, the seeds produced are either plump and viable (with scs(ae)) or shriveled and inviable (without scsae). Thus, the chromosome with scs(ae) is inherited as a whole without recombination. The objectives of this study were to characterize the chromosome carrying scs(ae) and to determine the process through which this gene was introgressed into the (lo) durum background. Molecular marker analysis with 27 probes and primers mapped to homoeologous group 1 and genomic in situ hybridization using differentially labeled total genomic DNA of durum wheat and Aegilops tauschii suggest the presence of a 1AL segment in place of the distal region of 1DL. Owing to the absence of any detectable duplications or deletions, homoeologous recombination is the most likely mechanism by which this introgression occurred.
- Published
- 2004
- Full Text
- View/download PDF
11. Detailed mapping of the species cytoplasm-specific (scs) gene in durum wheat.
- Author
-
Simons KJ, Gehlhar SB, Maan SS, and Kianian SF
- Subjects
- Alleles, Chromosome Mapping, Genotype, Homozygote, Microsatellite Repeats, Phenotype, Polymorphism, Restriction Fragment Length, Recombination, Genetic, Chromosomes, Plant genetics, Cytoplasm physiology, Genes, Plant genetics, Genetic Linkage genetics, Triticum genetics
- Abstract
The compatibility-inducing action of the scs(ti) (species cytoplasm-specific gene derived from Triticum timopheevii) and Vi (vitality) genes can be observed when a durum (T. turgidum) nucleus is placed in T. longissimum cytoplasm. These two genes restore compatibility between an otherwise incompatible nucleus and cytoplasm. The objective of this study was to localize the scs(ti) gene on a linkage map of chromosome 1A, which could eventually be used to clone the gene. The mapping population consisted of 110 F2 individuals derived from crossing a Langdon-T. dicoccoides chromosome 1A substitution line with a euplasmic (normal cytoplasm) line homozygous for the scs(ti) gene. Through a series of testcrosses the genotypes of the 110 individuals were determined: 22 had two copies, 59 had one copy, and 29 had no copy of the scs(ti) gene. Data from RFLP, AFLP, and microsatellite analysis were used to create a linkage map. The flanking marker loci found for the scs(ti) gene were Xbcd12 and Xbcd1449-1A.2 with distances of 2.3 and 0.6 cM, respectively. Nearly 10% of individuals in this population were double recombinant for a genetic interval of <3 cM. A blistering phenotype reminiscent of the phenotype observed in maize brittle-1 mutable was also evident in these individuals. The higher frequency of double recombination within this region and seed-blistering phenotype could be an indication of a transposable element(s) in this locus.
- Published
- 2003
- Full Text
- View/download PDF
12. Natural or induced nucleocytoplasmic heterogeneity in Triticum longissimum.
- Author
-
Maan SS
- Abstract
Alien cytoplasms produce a variety of phenotypes in durum wheat (Triticum turgidum) and common wheat (Triticum aestivum) cultivars, which indicate the prevalence of cytoplasmic variability in the subtribe Triticinae. Intraspecific cytoplasmic differences have been demonstrated between the subspecies of Triticum speltoides, Triticum dichasians, and Triticum comosum. In this study, durum wheat lines with cytoplasm from two accessions, B and C, of Triticum longissimum were compared, and meiotic chromosome pairing between the group 4 homoeologues from the same two accessions was examined in common wheat. First, monosomic addition or monosomic substitution lines of common wheat with cytoplasm and one chromosome (designated B) from accession B were crossed with those having cytoplasm and a chromosome designated C-1 or C-2 from accession C. In each substitution line, an alien chromosome substituted for a group 4 homoeologue. Each alien chromosome had a "selfish" (Sf) gene, which remained fixed in the wheat nucleus. The F1s had greatly reduced meiotic pairing between chromosomes B and C-1 and B and C-2, which indicated greatly reduced homology between the group 4 homoeologues from the two accessions. Second, by using Triticum timopheevii as a bridging species, chromosome B in a common wheat line was eliminated and an euploid durum line with cytoplasm from accession B was obtained. This line was fertile. In contrast, a similarly produced durum line with cytoplasm from accession C was male sterile and retained a species cytoplasm specific (scs) nuclear gene from T. timopheevii. In conclusion, nuclear and cytoplasmic heterogeneity pre-existed between accessions B and C and they represent varieties or incipient subspecies in T. longissimum. Alternatively, the Sf genes produced chromosomal heterogeneity and mutated cytoplasmic genes from one or both accessions. Key words : meiotic drive, selfish gene (Sf), gametocidal gene (Gc), Triticum, Aegilops.
- Published
- 1996
- Full Text
- View/download PDF
13. Interspecific nuclear-cytoplasmic compatibility controlled by genes on group 1 chromosomes in durum wheat.
- Author
-
Anderson JA and Maan SS
- Abstract
Triticum longissimum cytoplasm is incompatible with the T. turgidum nuclear genome. Two nuclear genes, scs and Vi, derived from the nuclear genome of T. timopheevii and by a spontaneous mutation, respectively, restore nuclear-cytoplasmic compatibility, normal plant vigor, and male fertility in these alloplasmic genotypes. The objectives of this study were (i) to determine the chromosomal locations of scs and Vi; (ii) to identify DNA markers for scs and Vi; and (iii) to determine the interactions involving the dosage of scs and Vi. Two populations segregating for scs and Vi were produced and scored for seedling vigor (indicating presence of scs) and degree of self-fertility (indicating presence of Vi). Four RFLP markers were mapped near scs. Aneuploid analysis revealed that these markers, and hence the scs gene, are located on the long arm of chromosome 1A. Four RFLP markers were mapped near Vi on 1BS. Results indicated that other factors may be inhibiting the expression of Vi. We determined the dosage of scs and Vi in both populations with the aid of the linked RFLP markers. Individuals with two versus one dose of scs had reduced self-fertility, while individuals with two versus one dose of Vi had similar self-fertility.
- Published
- 1995
- Full Text
- View/download PDF
14. Interactions between the scs and Vi genes in alloplasmic durum wheat.
- Author
-
Maan SS
- Abstract
Two nuclear genes, vitality (Vi) on an A- or B-genome chromosome and species cytoplasm specific (scs) on a 1DL telosome from Triticum aestivum L. or a telosome from Aegilops uniaristata Vis. (un telosome), improved compatibility between the nucleus of Triticum turgidum L. var. durum and the cytoplasm of Ae. longissima S. &M. or Ae. uniaristata. To study interactions between Vi and scs and to determine the chromosomal location of Vi, 29-chromosome fertile plants were crossed with 13 D-genome disomic-substitution (d-sub) lines [except 5D(5A)] of 'Langdon' durum. F1 and backcross progenies were examined for meiotic chromosome number and pairing, fertility, and plant vigor. In 11 crosses, Vi restored seed viability but produced double-monosomics (d-monos) with greatly reduced growth and vigor. In contrast, crosses involving 1D(1A) and 1D(1B) d-sub lines produced d-monos with normal vigor and anthesis but nonfunctional pollen. A backcross of 1D + 1A d-mono F1 and 1D(1A) d-sub lines produced 11 male steriles; 3 had 13 II + 1 II 1D + 1 I 1A, 2 had 13 II + 2 I, 1 had 13 II + 1 II 1D(1A), and 5 were not examined. Crosses of 1D + 1A d-mono F1 with control durum, lo durum (with 1DL), and un durum (with un telosome) lines produced 16 male-sterile d-monos and 14 fertiles with 14 II + 1 I 1D, showing that 15-chromosome female gametes transmitted monosomes 1A and 1D. However, BC2F1's from 1D + 1B d-mono x fertile line with un telosome included 20 male-sterile d-monos, 6 fertile triple monosomics (13 II + 1 I 1D + 1 I 1B + t I un telosome), and 1 fertile plant with a 1B/1D translocation. Unlike d-mono 1A + 1D, d-mono 1B + 1D did not transmit 15-chromosome female gametes with monosomes 1D and 1B. Additional backcrosses also indicated that homozygous scs caused male sterility in 1D(1A) and 1D(1B) d-subs and that the procedure used was not suitable for the chromosomal location of Vi.
- Published
- 1994
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.