1. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells
- Author
-
Sylvie Coscoy, François Amblard, A. Buguin, Myriam Reffay, Benoit Ladoux, Jacques Camonis, Pascal Silberzan, Olivier Cochet-Escartin, Maria Carla Parrini, Physico-Chimie-Curie (PCC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) (MSC), Centre National de la Recherche Scientifique (CNRS), Unité de génétique et biologie des cancers (U830), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie-Institut National de la Santé et de la Recherche Médicale (INSERM), Matière et Systèmes Complexes (MSC (UMR_7057)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Mechanobiology Institute [Singapore] (MBI), National University of Singapore (NUS), C'nano Ile de France, Association Christelle Bouillot, Association pour la Recherche sur le Cancer, Labex CelTisPhyBio, Institut Curie Programme Incitatif et Coopératif 'Physique de la Cellule', Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes (MSC), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Physico-Chimie-Curie ( PCC ), Centre National de la Recherche Scientifique ( CNRS ) -INSTITUT CURIE-Université Pierre et Marie Curie - Paris 6 ( UPMC ), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) ( MSC ), Centre National de la Recherche Scientifique ( CNRS ), Unité de génétique et biologie des cancers ( U830 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut Curie-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Matière et Systèmes Complexes ( MSC ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Jacques Monod ( IJM ), Mechanobiology Institute [Singapore] ( MBI ), and National University of Singapore ( NUS )
- Subjects
rac1 GTP-Binding Protein ,RHOA ,MESH: Fluorescence Resonance Energy Transfer ,GTPase ,Madin Darby Canine Kidney Cells ,MESH: Dogs ,0302 clinical medicine ,MESH : Dogs ,MESH : Protein Transport ,Cell Movement ,Fluorescence Resonance Energy Transfer ,MESH : Cell Movement ,MESH: Animals ,Pseudopodia ,MESH: Cell Movement ,Physics ,0303 health sciences ,Tractive force ,biology ,Biomechanical Phenomena ,Cell biology ,Actin Cytoskeleton ,Protein Transport ,MESH: rhoA GTP-Binding Protein ,MESH: Protein Transport ,MESH: Biomechanical Phenomena ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,MESH: Cell Adhesion ,Mechanical traction ,MESH : rac1 GTP-Binding Protein ,03 medical and health sciences ,Dogs ,Cell Adhesion ,Animals ,Cell adhesion ,MESH : Biomechanical Phenomena ,MESH : rhoA GTP-Binding Protein ,030304 developmental biology ,MESH : Madin Darby Canine Kidney Cells ,[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology ,MESH: rac1 GTP-Binding Protein ,Collective cell migration ,MESH: Madin Darby Canine Kidney Cells ,Cell Biology ,MESH : Cell Adhesion ,Multicellular organism ,MESH : Fluorescence Resonance Energy Transfer ,MESH : Actin Cytoskeleton ,MESH: Pseudopodia ,MESH : Pseudopodia ,biology.protein ,MESH : Animals ,MESH: Actin Cytoskeleton ,rhoA GTP-Binding Protein ,030217 neurology & neurosurgery - Abstract
International audience; The leading front of a collectively migrating epithelium often destabilizes into multicellular migration fingers where a cell initially similar to the others becomes a leader cell while its neighbours do not alter. The determinants of these leader cells include mechanical and biochemical cues, often under the control of small GTPases. However, an accurate dynamic cartography of both mechanical and biochemical activities remains to be established. Here, by mapping the mechanical traction forces exerted on the surface by MDCK migration fingers, we show that these structures are mechanical global entities with the leader cells exerting a large traction force. Moreover, the spatial distribution of RhoA differential activity at the basal plane strikingly mirrors this force cartography. We propose that RhoA controls the development of these fingers through mechanical cues: the leader cell drags the structure and the peripheral pluricellular acto-myosin cable prevents the initiation of new leader cells.
- Published
- 2014
- Full Text
- View/download PDF