1. Comparative Transcriptomic Analysis of Salt Adaptation in Roots of Contrasting Medicago truncatula Genotypes
- Author
-
Véronique Gruber, Jean-Laurent Ichanté, Axel de Zélicourt, Laura de Lorenzo, Benoit Alunni, Sandrine Imbeaud, Hervé Delacroix, Sandrine Blanchet, Carole Laffont, Mounawer Badri, Anouck Diet, Julie Plet, Esther M. González, Florian Frugier, Ons Zahaf, Martin Crespi, Ana Zabalza, Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Génomique Fonctionnelle des Tumeurs Solides (U1162), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11), Laboratoire de physiologie cellulaire végétale ( LPCV ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut National de la Recherche Agronomique ( INRA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Genomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Paris Descartes - Paris 5 ( UPD5 ) -IFR105-Université Paris Diderot - Paris 7 ( UPD7 ), Centre de génétique moléculaire ( CGM ), and Université Paris-Sud - Paris 11 ( UP11 )
- Subjects
0106 biological sciences ,[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,MESH : Molecular Sequence Data ,MESH : Plant Roots ,MESH: Plant Roots ,MESH : Genotype ,Plant Science ,Sodium Chloride ,01 natural sciences ,Plant Roots ,Transcriptome ,MESH: Genotype ,Gene Expression Regulation, Plant ,MESH: Medicago truncatula ,MESH : Adaptation, Physiological ,Plant Proteins ,2. Zero hunger ,Abiotic component ,chemistry.chemical_classification ,0303 health sciences ,MESH: Plant Proteins ,food and beverages ,Adaptation, Physiological ,Medicago truncatula ,MESH : Sodium Chloride ,Soil salinity ,MESH: Sodium Chloride ,Genotype ,Molecular Sequence Data ,Biology ,03 medical and health sciences ,MESH: Gene Expression Profiling ,Auxin ,MESH : Plant Proteins ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MESH: Gene Expression Regulation, Plant ,Gene ,Molecular Biology ,030304 developmental biology ,MESH: Molecular Sequence Data ,Abiotic stress ,MESH : Gene Expression Profiling ,MESH : Medicago truncatula ,Gene Expression Profiling ,fungi ,15. Life on land ,biology.organism_classification ,MESH: Adaptation, Physiological ,chemistry ,Adaptation ,MESH : Gene Expression Regulation, Plant ,010606 plant biology & botany - Abstract
International audience; Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.
- Published
- 2012
- Full Text
- View/download PDF