1. Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae
- Author
-
Marc-Henri Lebrun, Marie Emmanuelle Saint-Macary, Michel Droux, Océane Frelin, Marie Josèphe Gagey, Roland Beffa, Crystel Barbisan, Microbiologie, adaptation et pathogénie (MAP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche La Dargoire, Bayer Cropscience, Génomique fonctionnelle des champignons pathogènes des plantes (FungiPath), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), BIOlogie et GEstion des Risques en agriculture (BIOGER), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Trafic et signalisation membranaires chez les bactéries (MTSB), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, and Bayer Crop Science
- Subjects
MESH: Oryza ,Homocysteine ,amino-acid biosynthesis ,lcsh:Medicine ,Transsulfuration pathway ,MESH: Phenotype ,5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase ,chemistry.chemical_compound ,Methionine ,Gene Expression Regulation, Fungal ,Methionine synthase ,MESH: Magnaporthe ,lcsh:Science ,Amino acid synthesis ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,Sequence Deletion ,2. Zero hunger ,chemistry.chemical_classification ,Multidisciplinary ,biology ,lcsh:R ,food and beverages ,Hordeum ,Oryza ,MESH: Sequence Deletion ,Cystathionine beta synthase ,infection ,Amino acid ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,Magnaporthe ,Phenotype ,chemistry ,Biochemistry ,MESH: Hordeum ,MESH: Methionine ,MESH: 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase ,biology.protein ,lcsh:Q ,methionine ,MESH: Gene Expression Regulation, Fungal ,Cysteine ,Research Article - Abstract
International audience; Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.
- Published
- 2015
- Full Text
- View/download PDF