1. Structure-Based Design of Short Peptide Ligands Binding onto the E. coli Processivity Ring
- Author
-
Eric Ennifar, Philippe Dumas, Vincent Olieric, Dominique Burnouf, Jean Paul Briand, Jérôme Wagner, Annick Dejaegere, Olivier Chaloin, Gilles Guichard, Philippe Wolff, Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), The Swiss Light Source (SLS) (SLS-PSI), Paul Scherrer Institute (PSI), Immunologie et chimie thérapeutiques (ICT), Cancéropôle du Grand Est-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biotechnologie et signalisation cellulaire (BSC), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche de l'Ecole de biotechnologie de Strasbourg (IREBS)
- Subjects
Models, Molecular ,DNA polymerase ,Stereochemistry ,MESH: DNA Polymerase III ,MESH: Escherichia coli Proteins ,MESH: Drug Design ,Crystallography, X-Ray ,Ligands ,Ring (chemistry) ,Structure-Activity Relationship ,03 medical and health sciences ,chemistry.chemical_compound ,MESH: Structure-Activity Relationship ,Sciences du Vivant [q-bio]/Autre [q-bio.OT] ,MESH: DNA Polymerase beta ,Drug Discovery ,MESH: Ligands ,Escherichia coli ,MESH: Protein Binding ,DNA Polymerase beta ,Peptide ligand ,DNA Polymerase III ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,biology ,MESH: Escherichia coli ,Escherichia coli Proteins ,030302 biochemistry & molecular biology ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Processivity ,MESH: Crystallography, X-Ray ,Ligand (biochemistry) ,Orders of magnitude (mass) ,Enzyme ,chemistry ,Drug Design ,MESH: Oligopeptides ,biology.protein ,Thermodynamics ,Molecular Medicine ,MESH: Thermodynamics ,Oligopeptides ,MESH: Models, Molecular ,DNA ,Protein Binding - Abstract
International audience; The multimeric DNA sliding clamps confer high processivity to replicative DNA polymerases and are also binding platforms for various enzymes involved in DNA metabolism. These enzymes interact with the clamp through a small peptide that binds into a hydrophobic pocket which is a potential target for the development of new antibacterial compounds. Starting from a generic heptapeptide, we used a structure-based strategy to improve the design of new peptide ligands. Chemical modifications at specific residues result in a dramatic increase of the interaction as measured by SPR and ITC. The affinity of our best hits was improved by 2 orders of magnitude as compared to the natural ligand, reaching 10(-8) M range. The molecular basis of the interactions was analyzed by solving the co-crystal structures of the most relevant peptides bound to the clamp and reveals how chemical modifications establish new contacts and contributes to an increased affinity of the ligand.
- Published
- 2011
- Full Text
- View/download PDF