1. Compressive forces stabilize microtubules in living cells
- Author
-
Li, Yuhui, Kučera, Ondřej, Cuvelier, Damien, Rutkowski, David, Deygas, Mathieu, Rai, Dipti, Pavlovič, Tonja, Vicente, Filipe Nunes, Piel, Matthieu, Giannone, Grégory, Vavylonis, Dimitrios, Akhmanova, Anna, Blanchoin, Laurent, Théry, Manuel, CytoMorphoLab, Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Ecotaxie, microenvironnement et développement lymphocytaire (EMily (UMR_S_1160 / U1160)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Biologie Cellulaire et Cancer, Institut Curie [Paris]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Gilles de Gennes pour la Microfluidique, Lehigh University Physics Department, Lehigh University [Bethlehem], Department of Biology, Faculty of Sciences, Utrecht University, Institut Interdisciplinaire de Neurosciences (IINS), Centre National de la Recherche Scientifique (CNRS), Bettencourt-Schueller Foundation, Emergence program of the Ville de Paris, Schlumberger Foundation for education and research, Grant from the National Institute of Health (R35GM136372), Netherlands Organisation for Scientific Research (NWO) ECHO Grant 711.018.004, INCA (AAP PLBIO no. 2020-109), Fondation pour la Recherche Médicale (SPF201809007121), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), ANR-21-CE11-0004,CoCyNet,Structure et mécanique des réseaux composites de cytosquelette(2021), European Project: 771599,ICEBERG, and European Project: 741773,AAA
- Subjects
MESH: Microtubules ,MESH: Research Design ,MESH: Cytoskeleton ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,MESH: Cell Movement ,MESH: Polymers - Abstract
Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.
- Published
- 2023
- Full Text
- View/download PDF