1. Carbon Monoxide Oxidation Promoted by a Highly Active Strained PdO Layer at the Surface of Au30Pd70(110)
- Author
-
M.C. Saint-Lager, Francisco J. Cadete Santos Aires, O. Robach, E. Ehret, Stéphanie Garaudée, M. A. Languille, Aude Bailly, Surfaces, Interfaces et Nanostructures (SIN ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut photonique d'analyse non-destructive européen des matériaux anciens (IPANEMA), Muséum national d'Histoire naturelle (MNHN)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), IRCELYON-Catalyse Hétérogène pour la Transition Energétique (CATREN), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Epitaxie et couches minces (EpiCM ), Nanostructures et Rayonnement Synchrotron (NRS ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Surfaces, Interfaces et Nanostructures (NEEL - SIN), Epitaxie et couches minces (NEEL- EpiCM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
кислород ,Materials science ,Analytical chemistry ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Mass spectrometry ,01 natural sciences ,Oxygen ,Catalysis ,chemistry.chemical_compound ,оксид углерода ,тонкие пленки ,Phase (matter) ,каталитические свойства ,золото ,Dissolution ,ComputingMilieux_MISCELLANEOUS ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,окисление ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology ,Layer (electronics) ,Carbon monoxide - Abstract
International audience; The evolution of the Au30Pd70(110) surface was studied by coupling grazing incidence X-ray diffraction and mass spectrometry under oxygen-rich conditions at moderate temperatures (300 to 470 K). This allows us to correlate the depth profile of its structure to its catalytic properties for carbon monoxide (CO) oxidation. Under increasing pressure from ultrahigh vacuum up to 100 mbar, both oxygen and CO induce Pd segregation, even at room temperature. However, in pure oxygen the surface is reorganized with a (1 × 2) missing row reconstruction, whereas in pure CO it is strongly roughened. When oxygen pressure is increased a phase corresponding to the initial step of the oxidation with oxygen dissolution in the subsurface region appears at first. Then, from about 400 K onward, an oxidized thin Pd layer (≤1 nm) is formed growing in the [100]PdO direction. This PdO phase is strained and does not coincide with the P42/mmc structure usually observed for this oxide under ambient conditions. It is more probably consistent with the high pressure I4/mmm PdO structure strained by epitaxy on the underneath alloy. For higher oxidizing conditions and layer thickness, the oxide will then relax to the usual PdO structure. This strained oxide is easily reduced by CO and exhibits a very high activity for CO oxidation. Its catalytic performance at 470 K is comparable to the one found on surfaces of pure palladium at higher temperatures. Furthermore, on the clean Au30Pd70(110) surface, surface oxidation is hindered up to 470 K if CO is introduced prior to oxygen. This indicates that when Pd is alloyed with gold, its binding with CO is stronger than with oxygen. The weakening of the Pd–O binding by surrounding gold atoms is the key of the formation of a well-ordered and very active thin PdO film on Au30Pd70(110).
- Published
- 2019
- Full Text
- View/download PDF