1. Energy and throughput aware adequate routing for wireless sensor networks using integrated game theory method
- Author
-
M. Vivek Kumar and O. Saraniya
- Subjects
WSN ,Routing algorithm ,Scheduling in nodes ,Network lifetime ,Energy efficiency ,Throughput ,Medicine ,Science - Abstract
Abstract A Wireless Sensor Network (WSN) is usually made up of a large number of discrete sensor nodes, each of which requires restricted resources, including memory, computing power, and energy. To extend the network lifetime, these limited resources must be used effectively. In WSN, clustering constitutes one of the best methods for optimizing network longevity and energy conservation. In this work, we proposed a novel Energy and Throughput Aware Adaptive Routing (ETAAR) algorithm based on Cooperative Game Theory (CGT). To achieve the energy efficient and improved data rate routing in WSN, we are applied two game theories of CGT and coalition game. The main part of this routing mechanism is cluster head selection and clustering the nodes to perform energy efficient and throughput effective communication between the nodes. In first stage, CGT based utility function which adopts both energy and throughput is utilized to handpick the CH nodes. In the second stage, along with the energy and throughput, average end-to-end delay is considered for the adaptive time slot transmission to avoid collision in the coalition game approach. MATLAB tool is used for simulation. The simulation results shows that the proposed ETAAR protocol is outperforms than earlier works of routing in terms of residual energy, PDR, energy due ratio, average end-to-end delay, dead nodes. The network lifetime of 48% extension, energy saving of 60% and 52.5% of delay shortage attained in ETAAR.
- Published
- 2024
- Full Text
- View/download PDF