216 results on '"M. Schätzl"'
Search Results
2. Prion strains depend on different endocytic routes for productive infection
- Author
-
Andrea Fehlinger, Hanna Wolf, André Hossinger, Yvonne Duernberger, Catharina Pleschka, Katrin Riemschoss, Shu Liu, Romina Bester, Lydia Paulsen, Suzette A. Priola, Martin H. Groschup, Hermann M. Schätzl, and Ina M. Vorberg
- Subjects
Medicine ,Science - Abstract
Abstract Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
- Published
- 2017
- Full Text
- View/download PDF
3. Polymorphisms in glia maturation factor β gene are markers of cellulose ether effectiveness in prion-infected mice
- Author
-
Keita Arai, Ayumi Oguma, Miki Watanabe-Matsui, Kenta Teruya, Yuji Sakasegawa, Keiko Nishizawa, Sabine Gilch, Sara Iwabuchi, Katsumi Doh-ura, and Hermann M. Schätzl
- Subjects
Genetic Markers ,Glia Maturation Factor ,Male ,Proteomics ,0301 basic medicine ,Biophysics ,Ether ,Glia maturation factor ,Biology ,Biochemistry ,Genetic analysis ,Prion Diseases ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,Hypromellose Derivatives ,0302 clinical medicine ,Polymorphism (computer science) ,Animals ,Cellulose ,Molecular Biology ,Gene ,Genetics ,Polymorphism, Genetic ,Brain ,Genomics ,Cell Biology ,030104 developmental biology ,chemistry ,Genetic marker ,030220 oncology & carcinogenesis - Abstract
Anti-prion effects of cellulose ether (CE) are reported in rodents, but the molecular mechanism is fully unknown. Here, we investigated the genetic background of CE effectiveness by proteomic and genetic analysis in mice. Proteomic analysis in the two mouse lines showing a dramatic difference in CE effectiveness revealed a distinct polymorphism in the glia maturation factor β gene. This polymorphism was significantly associated with the CE effectiveness in various prion-infected mouse lines. Sequencing of this gene and its vicinity genes also revealed several other polymorphisms that were significantly related to the CE effectiveness. These polymorphisms are useful as genetic markers for finding more suitable mouse lines and exploring the genetic factors of CE effectiveness.
- Published
- 2021
- Full Text
- View/download PDF
4. An astrocyte cell line that differentially propagates murine prions
- Author
-
Basant A. Abdulrahman, Waqas Tahir, Simrika Thapa, Rupali Walia, Dalia H. A. Abdelaziz, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,PrPSc Proteins ,animal diseases ,Bovine spongiform encephalopathy ,prion disease ,Creutzfeldt–Jakob disease ,Gene Expression ,Scrapie ,Biology ,Immunofluorescence ,Protein Aggregation, Pathological ,Biochemistry ,Cell Line ,Prion Diseases ,prion ,Mice ,03 medical and health sciences ,astrocyte ,neurodegenerative disease ,prion strain ,medicine ,Animals ,Humans ,PrPC Proteins ,bovine spongiform encephalopathy ,protein misfolding ,Molecular Biology ,030102 biochemistry & molecular biology ,medicine.diagnostic_test ,scrapie ,Neurodegeneration ,astrocytes ,neurodegeneration ,Molecular Bases of Disease ,Translation (biology) ,Cell Biology ,prion infection ,medicine.disease ,C8D1A ,In vitro ,nervous system diseases ,Cell biology ,030104 developmental biology ,medicine.anatomical_structure ,Cell culture ,Astrocyte - Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the pathological isoform PrPSc. Elucidating the molecular and cellular mechanisms underlying prion propagation may help to develop disease interventions. Cell culture systems for prion propagation have greatly advanced molecular insights into prion biology, but translation of in vitro to in vivo findings is often disappointing. A wider range of cell culture systems might help overcome these shortcomings. Here, we describe an immortalized mouse neuronal astrocyte cell line (C8D1A) that can be infected with murine prions. Both PrPC protein and mRNA levels in astrocytes were comparable with those in neuronal and non-neuronal cell lines permitting persistent prion infection. We challenged astrocytes with three mouse-adapted prion strains (22L, RML, and ME7) and cultured them for six passages. Immunoblotting results revealed that the astrocytes propagated 22L prions well over all six passages, whereas ME7 prions did not replicate, and RML prions replicated only very weakly after five passages. Immunofluorescence analysis indicated similar results for PrPSc. Interestingly, when we used prion conversion activity as a readout in real-time quaking-induced conversion assays with RML-infected cell lysates, we observed a strong signal over all six passages, comparable with that for 22L-infected cells. These data indicate that the C8D1A cell line is permissive to prion infection. Moreover, the propagated prions differed in conversion and proteinase K–resistance levels in these astrocytes. We propose that the C8D1A cell line could be used to decipher prion strain biology.
- Published
- 2020
- Full Text
- View/download PDF
5. Metformin reduces prion infection in neuronal cells by enhancing autophagy
- Author
-
Basant Abdulrahman, Dalia H. A. Abdelaziz, Lauren Vankuppeveld, Hermann M. Schätzl, and Simrika Thapa
- Subjects
0301 basic medicine ,Gene isoform ,endocrine system diseases ,Combination therapy ,Prions ,animal diseases ,Biophysics ,Mice, Inbred Strains ,Type 2 diabetes ,Pharmacology ,Biochemistry ,Cell Line ,Prion Diseases ,03 medical and health sciences ,0302 clinical medicine ,Autophagy ,medicine ,Animals ,Molecular Biology ,business.industry ,AMPK ,Cell Biology ,medicine.disease ,Metformin ,nervous system diseases ,Blot ,030104 developmental biology ,Cell culture ,030220 oncology & carcinogenesis ,Female ,business ,medicine.drug - Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals that are caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. No effective treatment is available for prion diseases. Metformin is a first-line medication for treatment of type 2 diabetes which is known to activate AMPK and induce autophagy through the inhibition of mammalian target of rapamycin (mTOR1) signaling. Metformin was reported to be beneficial in various protein misfolding and neurodegenerative diseases like Alzheimer’s and Huntington’s diseases. In this study we investigated the anti-prion effect of metformin in persistently prion-infected neuronal cells. Our data showed that metformin significantly decreased the PrPSc load in the treated cells, as shown by less PK resistant PrP in Western blots and reduced prion conversion activity in Real-Time Quaking-Induced Conversion (RT-QuIC) assay in both 22L-ScN2a and RML-ScCAD5 cells. Additionally, metformin induced autophagy as shown by higher levels of LC3-II in treated cells compared with control cells. On the other hand, our mouse bioassay showed that oral metformin at a dose of 2 mg/ml in drinking water had no effect on the survival of prion-infected mice. In conclusion, our findings describe the anti-prion effect of metformin in two persistently prion-infected neuronal cell lines. This effect can be explained at least partially by the autophagy inducing activity of metformin. This study sheds light on metformin as an anti-prion candidate for the combination therapy of prion diseases.
- Published
- 2020
- Full Text
- View/download PDF
6. Sephin1 Reduces Prion Infection in Prion-Infected Cells and Animal Model
- Author
-
Simrika Thapa, Dalia H. A. Abdelaziz, Basant A. Abdulrahman, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,Gene isoform ,animal diseases ,Endoplasmic reticulum ,Multiple sclerosis ,Protein subunit ,Neuroscience (miscellaneous) ,Protein phosphatase 1 ,Biology ,medicine.disease ,nervous system diseases ,Cell biology ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,030104 developmental biology ,0302 clinical medicine ,Neurology ,Cell culture ,Unfolded protein response ,medicine ,Amyotrophic lateral sclerosis ,030217 neurology & neurosurgery - Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.
- Published
- 2020
- Full Text
- View/download PDF
7. Cellulose ether treatmentin vivogenerates chronic wasting disease prions with reduced protease resistance and delayed disease progression
- Author
-
Katsumi Doh-ura, Maria Immaculata Arifin, Preetha Gopalakrishnan, Samia Hannaoui, Sheng Chun Chang, Sabine Gilch, Jie Yu, and Hermann M. Schätzl
- Subjects
PrPSc conformation ,0301 basic medicine ,Genetically modified mouse ,PrPSc Proteins ,Prions ,Protein Conformation ,animal diseases ,medicine.medical_treatment ,Gene Expression ,Mice, Transgenic ,Biology ,Ether ,Biochemistry ,Prion Proteins ,Microbiology ,Persistence (computer science) ,Mice ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,0302 clinical medicine ,In vivo ,medicine ,Animals ,Cellulose ,Brain Chemistry ,Molecular Basis of Disease ,Protease ,Inoculation ,chronic wasting disease ,Deer ,cellulose ether ,Chronic wasting disease ,Proteinase K ,medicine.disease ,Recombinant Proteins ,In vitro ,3. Good health ,therapeutic ,030104 developmental biology ,prophylactic ,biology.protein ,Wasting Disease, Chronic ,Original Article ,ORIGINAL ARTICLES ,030217 neurology & neurosurgery ,Peptide Hydrolases - Abstract
Chronic wasting disease (CWD) is a prion disease of free‐ranging and farmed cervids that is highly contagious because of extensive prion shedding and prion persistence in the environment. Previously, cellulose ether compounds (CEs) have been shown to significantly extend the survival of mice inoculated with mouse‐adapted prion strains. In this study, we used CEs, TC‐5RW, and 60SH‐50, in vitro and in vivo to assess their efficacy to interfere with CWD prion propagation. In vitro, CEs inhibited CWD prion amplification in a dose‐dependent manner. Transgenic mice over‐expressing elk PrPC (tgElk) were injected subcutaneously with a single dose of either of the CEs, followed by intracerebral inoculation with different CWD isolates from white tailed deer, mule deer, or elk. All treated groups showed a prolonged survival of up to more than 30 % when compared to the control group regardless of the CWD isolate used for infection. The extended survival in the treated groups correlated with reduced proteinase K resistance of prions. Remarkably, passage of brain homogenates from treated or untreated animals in tgElk mice resulted in a prolonged life span of mice inoculated with homogenates from CE‐treated mice (of + 17%) even in the absence of further treatment. Besides the delayed disease onset upon passage in TgElk mice, the reduced proteinase K resistance was maintained but less pronounced. Therefore, these compounds can be very useful in limiting the spread of CWD in captive and wild‐ranging cervids., Chronic wasting disease (CWD) is a prion disease affecting free‐ranging and farmed cervids, with substantial lateral transmission and effective shedding, making its containment nearly impossible. This poses a significant concern for public health, economy and ecology. Here we demonstrate that cellulose ether (CE) treatment of CWD infected transgenic mice (TgElk) prolongs survival and modifies the biochemical and biological properties of prions, resulting in reduced protease resistance along with delayed clinical disease. Therefore, CE treatment could be a good strategy to reduce CWD spreading, limiting its potential of transmission to cerid and non‐cervid animals and potentially to humans.
- Published
- 2019
- Full Text
- View/download PDF
8. Preparation and Characterization of Cellulose Ether Liposomes for the Inhibition of Prion Formation in Prion-Infected Cells
- Author
-
Keiko Nishizawa, Sabine Gilch, Katsumi Doh-ura, Ayumi Oguma, Hermann M. Schätzl, Kenta Teruya, and Yuji Sakasegawa
- Subjects
Prions ,Pharmaceutical Science ,Ether ,Phosphatidylserines ,02 engineering and technology ,030226 pharmacology & pharmacy ,Cell Line ,Polyethylene Glycols ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,High doses ,Animals ,Humans ,Cellulose ,EC50 ,Liposome ,021001 nanoscience & nanotechnology ,Bioavailability ,RAW 264.7 Cells ,chemistry ,Biochemistry ,Liposomes ,0210 nano-technology ,Ethers - Abstract
Prion accumulation in the brain and lymphoreticular system causes fatal neurodegenerative diseases. Our previous study revealed that cellulose ethers (CE) have anti-prion activities in vivo and in prion-infected cells when administered at high doses. This study aims to improve the bioavailability of a representative CE using a liposomal formulation and characterized CE-loaded liposomes in cultured cells. The liposomal formulation reduced the EC50 dose of CE by
- Published
- 2019
- Full Text
- View/download PDF
9. Gene-edited murine cell lines for propagation of chronic wasting disease prions
- Author
-
Cheng Ching Ho, Rupali Walia, Chi Lee, Sabine Gilch, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,Prion diseases ,Prions ,animal diseases ,Cell ,Cell Culture Techniques ,lcsh:Medicine ,Endogeny ,Biology ,Models, Biological ,Prion Proteins ,Article ,Cell Line ,03 medical and health sciences ,Mice ,0302 clinical medicine ,medicine ,Animals ,Neurodegeneration ,Receptor ,lcsh:Science ,Gene ,Gene Editing ,Multidisciplinary ,Deer ,lcsh:R ,Chronic wasting disease ,medicine.disease ,biology.organism_classification ,Virology ,nervous system diseases ,Bank vole ,030104 developmental biology ,medicine.anatomical_structure ,Subcloning ,Cell culture ,Wasting Disease, Chronic ,lcsh:Q ,030217 neurology & neurosurgery - Abstract
Prions cause fatal infectious neurodegenerative diseases in humans and animals. Cell culture models are essential for studying the molecular biology of prion propagation. Defining such culture models is mostly a random process, includes extensive subcloning, and for many prion diseases few or no models exist. One example is chronic wasting disease (CWD), a highly contagious prion disease of cervids. To extend the range of cell models propagating CWD prions, we gene-edited mouse cell lines known to efficiently propagate murine prions. Endogenous prion protein (PrP) was ablated in CAD5 and MEF cells, using CRISPR-Cas9 editing. PrP knock-out cells were reconstituted with mouse, bank vole and cervid PrP genes by lentiviral transduction. Reconstituted cells expressing mouse PrP provided proof-of-concept for re-established prion infection. Bank voles are considered universal receptors for prions from a variety of species. Bank vole PrP reconstituted cells propagated mouse prions and cervid prions, even without subcloning for highly susceptible cells. Cells reconstituted with cervid PrP and infected with CWD prions tested positive in prion conversion assay, whereas non-reconstituted cells were negative. This novel cell culture platform which is easily adjustable and allows testing of polymorphic alleles will provide important new insights into the biology of CWD prions.
- Published
- 2019
- Full Text
- View/download PDF
10. Prominent Stress Response of Purkinje Cells in Creutzfeldt–Jakob Disease
- Author
-
Gábor G. Kovács, István Kurucz, Herbert Budka, Csaba Ádori, Ferenc Müller, Péter Ács, Stefan Klöppel, Hermann M. Schätzl, R.John Mayer, and Lajos László
- Subjects
prion ,Creutzfeldt–Jakob disease ,Purkinje cell ,heat shock proteins ,cytoprotection ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
To examine the role of stress-related 70-kDa heat shock proteins (Hsp-s) in Creutzfeldt–Jakob disease (CJD), we performed immunocytochemistry to detect Hsp-72 and Hsp-73, together with the abnormal (PrPSc) and the presumed cellular form (PrPC) of the prion protein, and TUNEL method to measure cellular vulnerability in different brain regions in CJD and control cases. While Hsp-73 showed uniform distribution in all the examined samples, an increase in the number of Purkinje cells with prominent accumulation of Hsp-72 in the CJD group was observed. These neurons also showed intense PrPC staining, but TUNEL-positive nuclei were only detected in the granular (Hsp-72-negative) cell layer. Fewer cells of the inferior olivary nucleus were immunoreactive for Hsp-72 in CJD than in control cases, and regions showing severe spongiform change and gliosis exhibited fewer Hsp-72-immunoreactive neurons. Our results indicate that accumulation of the inducible Hsp-72 in certain cell types may be part of a cytoprotective mechanism, which includes preservation of proteins like PrPC.
- Published
- 2001
- Full Text
- View/download PDF
11. Ligands binding to the cellular prion protein induce its protective proteolytic release with therapeutic potential in neurodegenerative proteinopathies
- Author
-
Behnam Mohammadi, Inga Zerr, Simone Hornemann, Correia A, Mohsin Shafiq, Markus Glatzel, Hermann C. Altmeppen, Jörg Tatzelt, Michaela Schweizer, Ladan Amin, David A. Harris, Julia Bär, Federica Mazzola, Matthias Schmitz, Berta Puig, Antoine Triller, Adriano Aguzzi, Karl Frontzek, Luca Varani, Da Vela S, Alexander Schwarz, Paul Saftig, Simrika Thapa, Marina Mikhaylova, Luise Linsenmeier, Emiliano Biasini, Sebastian Jung, Sabine Gilch, Dmitri I. Svergun, Markus Damme, Amulya Nidhi Shrivastava, Tania Massignan, and Hermann M. Schätzl
- Subjects
chemistry.chemical_classification ,0303 health sciences ,Metalloproteinase ,biology ,Chemistry ,ADAM10 ,Neurotoxicity ,Endocytosis ,medicine.disease ,Neuroprotection ,Cell biology ,03 medical and health sciences ,0302 clinical medicine ,biology.protein ,medicine ,Protein folding ,Antibody ,Glycoprotein ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
The cellular prion protein (PrPC) is a central player in neurodegenerative diseases caused by protein misfolding, such as prion diseases or Alzheimer’s disease (AD). Expression levels of this GPI-anchored glycoprotein, especially at the neuronal cell surface, critically correlate with various pathomechanistic aspects underlying these diseases, such as templated misfolding (in prion diseases) and neurotoxicity and, hence, with disease progression and severity. In stark contrast to cell-associated PrPC, soluble extracellular forms or fragments of PrP are linked with neuroprotective effects, which is likely due to their ability to interfere with neurotoxic disease-associated protein conformers in the interstitial fluid. Fittingly, the endogenous proteolytic release of PrPCby the metalloprotease ADAM10 (‘shedding’) was characterized as a protective mechanism. Here, using a recently generated cleavage-site specific antibody, we shed new light on earlier studies by demonstrating that shed PrP (sPrP) negatively correlates with conformational conversion (in prion disease) and is markedly redistributed in murine brain in the presence of prion deposits or AD-associated amyloid plaques indicating a blocking and sequestrating activity. Importantly, we reveal that administration of certain PrP-directed antibodies and other ligands results in increased PrP shedding in cells and organotypic brain slice cultures. We also provide mechanistic and structural insight into this shedding-stimulating effect. In addition, we identified a striking exception to this, as one particular neuroprotective antibody, due to its special binding characteristics, did not cause increased shedding but rather strong surface clustering followed by fast endocytosis and degradation of PrPC. Both mechanisms may contribute to the beneficial action described for some PrP-directed antibodies/ligands and pave the way for new therapeutic strategies against devastating and currently incurable neurodegenerative diseases.
- Published
- 2021
- Full Text
- View/download PDF
12. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins
- Author
-
Cristobal Marrero-Winkens, Charu Sankaran, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,autophagy ,Amyloid ,Proteasome Endopeptidase Complex ,Protein Folding ,lcsh:QR1-502 ,Amyloidogenic Proteins ,Review ,Biology ,Fibril ,Biochemistry ,lcsh:Microbiology ,Prion Proteins ,Prion Diseases ,Biological pathway ,03 medical and health sciences ,Protein Aggregates ,0302 clinical medicine ,Alzheimer Disease ,fragmentation ,medicine ,Humans ,HSP70 Heat-Shock Proteins ,Fragmentation (cell biology) ,protein misfolding ,HSP110 Heat-Shock Proteins ,Molecular Biology ,Neurodegeneration ,Autophagy ,Amyotrophic Lateral Sclerosis ,neurodegeneration ,Hsp110 ,Parkinson Disease ,HSP40 Heat-Shock Proteins ,medicine.disease ,Cell biology ,030104 developmental biology ,Huntington Disease ,Proteasome ,Gene Expression Regulation ,disaggregation ,Parkinson’s disease ,Protein folding ,Alzheimer’s disease ,030217 neurology & neurosurgery - Abstract
Many devastating neurodegenerative diseases are driven by the misfolding of normal proteins into a pathogenic abnormal conformation. Examples of such protein misfolding diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. The misfolded proteins involved in these diseases form self-templating oligomeric assemblies that recruit further correctly folded protein and induce their conversion. Over time, this leads to the formation of high molecular and mostly fibrillar aggregates that are increasingly inefficient at converting normal protein. Evidence from a multitude of in vitro models suggests that fibrils are fragmented to form new seeds, which can convert further normal protein and also spread to neighboring cells as observed in vivo. While fragmentation and seed generation were suggested as crucial steps in aggregate formation decades ago, the biological pathways involved remain largely unknown. Here, we show that mechanisms of aggregate clearance—namely the mammalian Hsp70–Hsp40–Hsp110 tri-chaperone system, macro-autophagy, and the proteasome system—may not only be protective, but also play a role in fragmentation. We further review the challenges that exist in determining the precise contribution of these mechanisms to protein misfolding diseases and suggest future directions to resolve these issues.
- Published
- 2020
13. Early detection of prion protein aggregation with a fluorescent pentameric oligothiophene probe using spectral confocal microscopy
- Author
-
Waqas Tahir, Anastasiia A. Stepanchuk, K. Peter R. Nilsson, Hermann M. Schätzl, and Peter K. Stys
- Subjects
0301 basic medicine ,Amyloid ,PrPSc Proteins ,animal diseases ,Bovine spongiform encephalopathy ,Thiophenes ,Acetates ,Fibril ,Biochemistry ,Prion Proteins ,law.invention ,Prion Diseases ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,Mice ,Protein Aggregates ,0302 clinical medicine ,Confocal microscopy ,law ,Parenchyma ,medicine ,Image Processing, Computer-Assisted ,Animals ,Proteostasis Deficiencies ,Coloring Agents ,Fluorescent Dyes ,Brain Chemistry ,Microscopy, Confocal ,Chemistry ,Chronic wasting disease ,medicine.disease ,Recombinant Proteins ,nervous system diseases ,Staining ,030104 developmental biology ,Spectrometry, Fluorescence ,Biophysics ,Protein folding ,Female ,030217 neurology & neurosurgery - Abstract
Misfolding of the prion protein (PrP) and templating of its pathological conformation onto cognate proteins causes a number of lethal disorders of central nervous system in humans and animals, such as Creutzfeldt-Jacob disease, chronic wasting disease and bovine spongiform encephalopathy. Structural rearrangement of PrPC into PrPSc promotes aggregation of misfolded proteins into β-sheet-rich fibrils, which can be visualized by conformationally sensitive fluorescent probes. Early detection of prion misfolding and deposition might provide useful insights into its pathophysiology. Pentameric formyl thiophene acetic acid (pFTAA) is a novel amyloid probe that was shown to sensitively detect various misfolded proteins, including PrP. Here, we compared sensitivity of pFTAA staining and spectral microscopy with conventional methods of prion detection in mouse brains infected with mouse-adapted 22L prions. pFTAA bound to prion deposits in mouse brain sections exhibited a red-shifted fluorescence emission spectrum, which quantitatively increased with disease progression. Small prion deposits were detected as early as 50 days post-inoculation, well before appearance of clinical signs. Moreover, we detected significant spectral shifts in the greater brain parenchyma as early as 25 days post-inoculation, rivaling the most sensitive conventional method (real-time quaking-induced conversion). These results showcase the potential of pFTAA staining combined with spectral imaging for screening of prion-infected tissue. Not only does this method have comparable sensitivity to established techniques, it is faster and technically simpler. Finally, this readout provides valuable information about the spatial distribution of prion aggregates across tissue in the earliest stages of infection, potentially providing valuable pathophysiological insight into prion transmission.
- Published
- 2020
14. Recombinant prion protein vaccination of transgenic elk PrP mice and reindeer overcomes self-tolerance and protects mice against chronic wasting disease
- Author
-
Hermann M. Schätzl, Robert McCorkell, Lauren Vankuppeveld, Dalia H. A. Abdelaziz, Simrika Thapa, Jenna Brandon, and Justine Maybee
- Subjects
transgenic elk mice ,0301 basic medicine ,Genetically modified mouse ,animal diseases ,Bovine spongiform encephalopathy ,prion disease ,Mice, Transgenic ,Spleen ,transgenic mice ,Biology ,Biochemistry ,Prion Proteins ,prion ,Mice ,03 medical and health sciences ,Immune system ,vaccine ,medicine ,Animals ,bovine spongiform encephalopathy ,Molecular Biology ,Autoantibodies ,chronic wasting disease ,Vaccination ,neurodegeneration ,Antibody titer ,Molecular Bases of Disease ,Cell Biology ,Chronic wasting disease ,Vaccine efficacy ,medicine.disease ,Virology ,Creutzfeldt-Jakob disease ,Recombinant Proteins ,030104 developmental biology ,medicine.anatomical_structure ,cervid prion protein ,Wasting Disease, Chronic ,Female ,Reindeer - Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease that affects cervids in North America and now Europe. No effective measures are available to control CWD. We hypothesized that active vaccination with homologous and aggregation-prone recombinant prion protein (PrP) could overcome self-tolerance and induce autoantibody production against the cellular isoform of PrP (PrPC), which would be protective against CWD infection from peripheral routes. Five groups of transgenic mice expressing elk PrP (TgElk) were vaccinated with either the adjuvant CpG alone or one of four recombinant PrP immunogens: deer dimer (Ddi); deer monomer (Dmo); mouse dimer (Mdi); and mouse monomer (Mmo). Mice were then challenged intraperitoneally with elk CWD prions. All vaccinated mice developed ELISA-detectable antibody titers against PrP. Importantly, all four vaccinated groups survived longer than the control group, with the Mmo-immunized group exhibiting 60% prolongation of mean survival time compared with the control group (183 versus 114 days post-inoculation). We tested for prion infection in brain and spleen of all clinically sick mice. Notably, the attack rate was 100% as revealed by positive CWD signals in all tested tissues when assessed with Western blotting, real-time quaking-induced conversion, and immunohistochemistry. Our pilot study in reindeer indicated appreciable humoral immune responses to Mdi and Ddi immunogens, and the post-immune sera from the Ddi-vaccinated reindeer mitigated CWD propagation in a cell culture model (CWD-RK13). Taken together, our study provides very promising vaccine candidates against CWD, but further studies in cervids are required to investigate vaccine efficacy in the natural CWD hosts.
- Published
- 2018
- Full Text
- View/download PDF
15. Disulfide-crosslink scanning reveals prion–induced conformational changes and prion strain–specific structures of the pathological prion protein PrPSc
- Author
-
Cristobal Marrero-Winkens, Li Lu, Hiroki Otaki, Noriyuki Nishida, Yuzuru Taguchi, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,Gene isoform ,Glycosylation ,Chemistry ,animal diseases ,Scrapie ,Cell Biology ,Subcellular localization ,Biochemistry ,nervous system diseases ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,Protein structure ,Helix ,Protein folding ,Molecular Biology ,Cysteine - Abstract
Prions are composed solely of the pathological isoform (PrPSc) of the normal cellular prion protein (PrPC). Identification of different PrPSc structures is crucially important for understanding prion biology because the pathogenic properties of prions are hypothesized to be encoded in the structures of PrPSc. However, these structures remain yet to be identified, because of the incompatibility of PrPSc with conventional high-resolution structural analysis methods. Previously, we reported that the region between the first and the second α-helix (H1∼H2) of PrPC might cooperate with the more C-terminal side region for efficient interactions with PrPSc. From this starting point, we created a series of PrP variants with two cysteine substitutions (C;C-PrP) forming a disulfide-crosslink between H1∼H2 and the distal region of the third helix (Ctrm). We then assessed the conversion capabilities of the C;C-PrP variants in N2a cells infected with mouse-adapted scrapie prions (22L-ScN2a). Specifically, Cys substitutions at residues 165, 166, or 168 in H1∼H2 were combined with cysteine scanning along Ctrm residues 220–229. We found that C;C-PrPs are expressed normally with glycosylation patterns and subcellular localization similar to WT PrP, albeit differing in expression levels. Interestingly, some C;C-PrPs converted to protease-resistant isoforms in the 22L-ScN2a cells, but not in Fukuoka1 prion-infected cells. Crosslink patterns of convertible C;C-PrPs indicated a positional change of H1∼H2 toward Ctrm in PrPSc–induced conformational conversion. Given the properties of the C;C-PrPs reported here, we propose that these PrP variants may be useful tools for investigating prion strain–specific structures and structure–phenotype relationships of PrPSc.
- Published
- 2018
- Full Text
- View/download PDF
16. Autophagy regulates exosomal release of prions in neuronal cells
- Author
-
Dalia H. A. Abdelaziz, Hermann M. Schätzl, and Basant Abdulrahman
- Subjects
0301 basic medicine ,Gene isoform ,autophagy ,animal diseases ,prion disease ,ATG5 ,Creutzfeldt–Jakob disease ,Scrapie ,Exosomes ,Biochemistry ,Prion Proteins ,Cell Line ,prion ,Wortmannin ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,CRISPR/Cas ,medicine ,Animals ,Molecular Biology ,Neurons ,scrapie ,Neurodegeneration ,Autophagy ,neurodegeneration ,RT-QuIC ,Molecular Bases of Disease ,Neurodegenerative Diseases ,Cell Biology ,medicine.disease ,Microvesicles ,nervous system diseases ,3. Good health ,Cell biology ,Mice, Inbred C57BL ,030104 developmental biology ,chemistry ,Cell culture ,exosome (vesicle) ,extracellular vesicles - Abstract
Prions are protein-based infectious agents that autocatalytically convert the cellular prion protein PrPC to its pathological isoform PrPSc. Subsequent aggregation and accumulation of PrPSc in nervous tissues causes several invariably fatal neurodegenerative diseases in humans and animals. Prions can infect recipient cells when packaged into endosome-derived nanoparticles called exosomes, which are present in biological fluids such as blood, urine, and saliva. Autophagy is a basic cellular degradation and recycling machinery that also affects exosomal processing, but whether autophagy controls release of prions in exosomes is unclear. Our work investigated the effect of autophagy modulation on exosomal release of prions and how this interplay affects cellular prion infection. Exosomes isolated from cultured murine central neuronal cells (CAD5) and peripheral neuronal cells (N2a) contained prions as shown by immunoblotting for PrPSc, prion-conversion activity, and cell culture infection. We observed that autophagy stimulation with the mTOR inhibitor rapamycin strongly inhibited exosomal prion release. In contrast, inhibition of autophagy by wortmannin or CRISPR/Cas9-mediated knockout of the autophagy protein Atg5 (autophagy-related 5) greatly increased the release of exosomes and exosome-associated prions. We also show that a difference in exosomal prion release between CAD5 and N2a cells is related to differences at the level of basal autophagy. Taken together, our results indicate that autophagy modulation can control lateral transfer of prions by interfering with their exosomal release. We describe a novel role of autophagy in the prion life cycle, an understanding that may provide useful targets for containing prion diseases.
- Published
- 2018
- Full Text
- View/download PDF
17. Fatal Epstein-Barr virus-associated lymphoproliferative disorder following treatment with a novel mTOR Inhibitor for relapsed chronic lymphocytic leukemia
- Author
-
Katharina S. Götze, Dieter Hoffmann, Hermann M. Schätzl, Christian Peschel, Falko Fend, and Thomas Decker
- Subjects
Diseases of the blood and blood-forming organs ,RC633-647.5 - Abstract
We report on a patient with relapsed chronic lymphocytic leukemia (CLL) treated with the novel mTOR inhibitor RAD001 within a phase II clinical trial. Although the patient initially responded to therapy, RAD001 was discontinued after 32 weeks due to progression and fludarabine-based chemotherapy was started. The patient subsequently developed a rapidly fatal Epstein-Barr-virus-associated lymphoproliferative disorder, clonally unrelated to the CLL. The clinical course suggests caution when using newer immunosuppressive drugs for treatment of CLL, especially in the context of additional purine analog therapy.
- Published
- 2007
- Full Text
- View/download PDF
18. Combining autophagy stimulators and cellulose ethers for therapy against prion disease
- Author
-
Basant Abdulrahman, Katsumi Doh-ura, Waqas Tahir, Sabine Gilch, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,Gene isoform ,Drug ,autophagy ,Combination therapy ,PrPSc Proteins ,media_common.quotation_subject ,animal diseases ,prion disease ,Pharmacology ,Biochemistry ,60SH-50 ,Prion Diseases ,combination therapy ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,Mice ,0302 clinical medicine ,In vivo ,TC-5RW ,Animals ,cellulose ethers ,Adverse effect ,Cellulose ,media_common ,Sirolimus ,Chemistry ,rapamycin ,Autophagy ,Proteolytic enzymes ,Drug Synergism ,Cell Biology ,AR12 ,In vitro ,nervous system diseases ,030104 developmental biology ,Infectious Diseases ,Proteolysis ,Prion ,Female ,030217 neurology & neurosurgery ,Ethers ,Research Paper - Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.
- Published
- 2019
19. Autophagy pathways in the treatment of prion diseases
- Author
-
Sabine Gilch, Dalia H. A. Abdelaziz, Basant Abdulrahman, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,Gene isoform ,Endosome ,animal diseases ,Cell ,Exosomes ,030226 pharmacology & pharmacy ,Article ,Prion Diseases ,03 medical and health sciences ,Cellular degradation ,0302 clinical medicine ,Drug Discovery ,medicine ,Autophagy ,Animals ,Humans ,Enhancer ,Pharmacology ,Chemistry ,Microvesicles ,Cell biology ,nervous system diseases ,030104 developmental biology ,medicine.anatomical_structure ,Flux (metabolism) - Abstract
Prions use cellular machineries for autocatalytic propagation by conformational conversion of the cellular prion protein into the pathological isoform PrP(Sc). Autophagy is a basic cellular degradation and recycling machinery that delivers cargo to lysosomes. Increase of autophagic flux in cells results in enhanced delivery of PrP(Sc) in late endosomes to lysosomal degradation, providing a therapeutic target for prion diseases. Application of chemical enhancers of autophagy to cell or mouse models of prion infection provided a solid experimental proof-of-concept for this anti-prion strategy. In addition, increasing autophagy also reduces exosomal release of prions and transfer of prion infectivity between cells. Taken together, pharmacological induction of autophagy is a promising target for containing prion diseases, and ideal candidate for future combination therapies.
- Published
- 2019
20. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis
- Author
-
Sabine Gilch, Maria Immaculata Arifin, Sheng Chun Chang, Hermann M. Schätzl, Samia Hannaoui, and Simrika Thapa
- Subjects
0301 basic medicine ,Genetically modified mouse ,cervid ,040301 veterinary sciences ,animal diseases ,Review ,Disease ,Biology ,Prion Proteins ,Catalysis ,Epitope ,polymorphism ,lcsh:Chemistry ,0403 veterinary science ,Inorganic Chemistry ,Pathogenesis ,03 medical and health sciences ,strain ,Polymorphism (computer science) ,Zoonoses ,medicine ,Animals ,Amino Acid Sequence ,Physical and Theoretical Chemistry ,Allele ,lcsh:QH301-705.5 ,Molecular Biology ,Spectroscopy ,Genetics ,Polymorphism, Genetic ,chronic wasting disease ,pathogenesis ,Deer ,Organic Chemistry ,04 agricultural and veterinary sciences ,General Medicine ,Chronic wasting disease ,medicine.disease ,In vitro ,nervous system diseases ,Computer Science Applications ,030104 developmental biology ,lcsh:Biology (General) ,lcsh:QD1-999 ,prion protein ,Wasting Disease, Chronic - Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal’s susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal’s genetics in CWD can help to predict, contain, or prevent transmission of CWD.
- Published
- 2021
- Full Text
- View/download PDF
21. Dimerization of the cellular prion protein inhibits propagation of scrapie prions
- Author
-
Ralf Seidel, Anika Gonsberg, Sebastian Jung, Anna Dorothee Engelke, Michael Baier, Jörg Tatzelt, Sarah Ulbrich, Hermann M. Schätzl, Shaon Basu, Martin Engelhard, Konstanze F. Winklhofer, Gerd Multhaup, and Simrika Thapa
- Subjects
0301 basic medicine ,Genetically modified mouse ,Gene isoform ,Amyloid ,animal diseases ,Scrapie ,Mice, Transgenic ,Biochemistry ,Prion Proteins ,Pathogenesis ,03 medical and health sciences ,Mice ,Neuroblastoma ,0302 clinical medicine ,mental disorders ,Tumor Cells, Cultured ,Animals ,Humans ,Molecular Biology ,Transition (genetics) ,Chemistry ,Wild type ,Molecular Bases of Disease ,Cell Biology ,Cell biology ,nervous system diseases ,Protein Transport ,030104 developmental biology ,Protein Multimerization ,030217 neurology & neurosurgery ,Intracellular ,HeLa Cells - Abstract
A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into the scrapie isoform, denoted PrP(Sc). Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrP(C) and PrP(Sc); however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrP(C) is converted in scrapie-infected cells, suggesting that not all PrP(C) species are suitable substrates for the conversion. On the basis of the observation that PrP(C) can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrP(C), the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrP(C). Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrP(C) dimerization completely blocked its conversion into PrP(Sc) in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrP(C) dimers had a dominant-negative inhibition effect on the conversion of monomeric PrP(C). Our findings suggest that PrP(C) monomers are the major substrates for PrP(Sc) propagation and that it may be possible to halt prion formation by stabilizing PrP(C) dimers.
- Published
- 2018
22. Overexpression of quality control proteins reduces prion conversion in prion-infected cells
- Author
-
Basant Abdulrahman, Hermann M. Schätzl, Li Lu, Simrika Thapa, Manel Ben Aissa, and Dalia H. A. Abdelaziz
- Subjects
0301 basic medicine ,Gene isoform ,Cell type ,PrPSc Proteins ,Bovine spongiform encephalopathy ,animal diseases ,prion disease ,Protein Disulfide-Isomerases ,Creutzfeldt–Jakob disease ,Gene Expression ,Scrapie ,Biology ,Biochemistry ,prion ,03 medical and health sciences ,Mice ,lentivirus ,Cell Line, Tumor ,medicine ,Animals ,Humans ,PrPC Proteins ,ER quality control ,bovine spongiform encephalopathy ,Molecular Biology ,Endoplasmic reticulum ,Neurodegeneration ,scrapie ,neurodegeneration ,Membrane Transport Proteins ,Molecular Bases of Disease ,Cell Biology ,medicine.disease ,Endoplasmic Reticulum Stress ,In vitro ,infection ,3. Good health ,Cell biology ,nervous system diseases ,030104 developmental biology ,Mannose-Binding Lectins ,Cell culture ,Female ,endoplasmic reticulum stress (ER stress) - Abstract
Prion diseases are fatal infectious neurodegenerative disorders in humans and other animals and are caused by misfolding of the cellular prion protein (PrPC) into the pathological isoform PrPSc. These diseases have the potential to transmit within or between species, including zoonotic transmission to humans. Elucidating the molecular and cellular mechanisms underlying prion propagation and transmission is therefore critical for developing molecular strategies for disease intervention. We have shown previously that impaired quality control mechanisms directly influence prion propagation. In this study, we manipulated cellular quality control pathways in vitro by stably and transiently overexpressing selected quality control folding (ERp57) and cargo (VIP36) proteins and investigated the effects of this overexpression on prion propagation. We found that ERp57 or VIP36 overexpression in persistently prion-infected neuroblastoma cells significantly reduces the amount of PrPSc in immunoblots and prion-seeding activity in the real-time quaking-induced conversion (RT-QuIC) assay. Using different cell lines infected with various prion strains confirmed that this effect is not cell type– or prion strain–specific. Moreover, de novo prion infection revealed that the overexpression significantly reduced newly formed PrPSc in acutely infected cells. ERp57-overexpressing cells significantly overcame endoplasmic reticulum stress, as revealed by expression of lower levels of the stress markers BiP and CHOP, accompanied by a decrease in PrP aggregates. Furthermore, application of ERp57-expressing lentiviruses prolonged the survival of prion-infected mice. Taken together, improved cellular quality control via ERp57 or VIP36 overexpression impairs prion propagation and could be utilized as a potential therapeutic strategy.
- Published
- 2018
23. Small-scale Subcellular Fractionation with Sucrose Step Gradient
- Author
-
Hermann M. Schätzl and Yuzuru Taguchi
- Subjects
Chromatography ,Sucrose ,Strategy and Management ,Mechanical Engineering ,Metals and Alloys ,Fractionation ,Industrial and Manufacturing Engineering ,Article ,chemistry.chemical_compound ,Membrane ,Membrane protein ,chemistry ,Organelle ,Biophysics ,Cell fractionation ,Prion protein ,Integral membrane protein - Abstract
Here, we introduce the protocol for small-scale and simple subcellular fractionation used in our recent publication (Taguchi et al., 2013), which uses homogenization by passing through needles and sucrose step-gradient. Subcellular fractionation is a very useful technique but usually a large number of cells are required. Because we needed subcellular fractionation of transiently-transfected cells, we developed a protocol for smaller numbers of cells. Our protocol for the subcellular fractionation is based on the protocol published by de Araujo and Huber (de Araujo et al., 2007), although substantial modifications have been made according to our experiences and information from personal communications. As optimal conditions seem to vary between cell lines, we advise to further modify the protocol to optimize for individual experiments. Our method is simple but sufficient for analysis of integral membrane proteins or proteins anchored to organelles by glycosylphosphatidylinositol or other lipid anchors, e.g. prion protein. However, proteins non-covalently attached to membranes or membrane proteins of organelles seem to be more prone to dissociation from the organelles during preparation and, if these proteins are the object of study, further modifications might be necessary. Unlike in a continuous gradient, where a protein of interest is scattered over a wide range, step-gradient fractionation is advantageous in detection of relatively small amounts of proteins from small-scale experiments, because it concentrates the protein of interest in one fraction, if an appropriate combination of sucrose concentrations is used.
- Published
- 2017
24. Chronic wasting disease: Emerging prions and their potential risk
- Author
-
Hermann M. Schätzl, Sabine Gilch, and Samia Hannaoui
- Subjects
0301 basic medicine ,Monkeys ,Bioinformatics ,Macaque ,Biochemistry ,Pearls ,Geographical locations ,Animal Diseases ,Prion Diseases ,0302 clinical medicine ,Zoonoses ,Medicine and Health Sciences ,lcsh:QH301-705.5 ,Mammals ,Eukaryota ,Ruminants ,Animal Prion Diseases ,Infectious Diseases ,Veterinary Diseases ,Vertebrates ,Wasting Disease, Chronic ,Reindeer ,Primates ,lcsh:Immunologic diseases. Allergy ,Prions ,Immunology ,MEDLINE ,Biology ,Microbiology ,03 medical and health sciences ,Virology ,biology.animal ,Old World monkeys ,Genetics ,medicine ,Animals ,Humans ,Molecular Biology ,Potential risk ,Deer ,Organisms ,Biology and Life Sciences ,Proteins ,Chronic wasting disease ,medicine.disease ,030104 developmental biology ,lcsh:Biology (General) ,Amniotes ,North America ,Parasitology ,Veterinary Science ,People and places ,lcsh:RC581-607 ,Zoology ,Chronic Wasting Disease ,030217 neurology & neurosurgery - Published
- 2017
25. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions
- Author
-
Li Lu, Dalia H. A. Abdelaziz, Basant Abdulrahman, Alexander Zukiwski, Hermann M. Schätzl, Sabine Gilch, Simrika Thapa, Stefan Proniuk, and Shubha Jain
- Subjects
0301 basic medicine ,Gene isoform ,PrPSc Proteins ,animal diseases ,lcsh:Medicine ,Stimulation ,Article ,Pathogenesis ,03 medical and health sciences ,Mice ,In vivo ,Cell Line, Tumor ,Autophagy ,Animals ,lcsh:Science ,Neurons ,Sulfonamides ,Multidisciplinary ,Chemistry ,lcsh:R ,In vitro ,3. Good health ,Cell biology ,nervous system diseases ,030104 developmental biology ,Cell culture ,Celecoxib ,Pyrazoles ,Protein folding ,lcsh:Q - Abstract
Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrPC) into the pathologic isoform PrPSc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrPSc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrPSc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.
- Published
- 2017
26. Assessing Proteinase K Resistance of Fish Prion Proteins in a Scrapie-Infected Mouse Neuroblastoma Cell Line
- Author
-
Eirini Kanata, Evgenia Salta, Theodoros Sklaviadis, Hermann M. Schätzl, Christos A. Ouzounis, and Sabine Gilch
- Subjects
Gene isoform ,Prions ,animal diseases ,Proteolysis ,lcsh:QR1-502 ,ScN2a ,Scrapie ,Biology ,Article ,lcsh:Microbiology ,Prion Diseases ,law.invention ,prion ,Fish Diseases ,Mice ,03 medical and health sciences ,0302 clinical medicine ,law ,Cell Line, Tumor ,Virology ,medicine ,Animals ,14. Life underwater ,Gene ,030304 developmental biology ,Neurons ,fish ,cell culture ,0303 health sciences ,medicine.diagnostic_test ,Fishes ,cross-species transmission ,Proteinase K ,nervous system diseases ,Cell biology ,Fungal prion ,Infectious Diseases ,Cell culture ,Recombinant DNA ,biology.protein ,Endopeptidase K ,030217 neurology & neurosurgery - Abstract
The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrP(C), into an aberrant and partially proteinase K resistant isoform, PrP(Sc). Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK), as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs.
- Published
- 2014
- Full Text
- View/download PDF
27. Piperazine derivatives inhibit PrP/PrPres propagation in vitro and in vivo
- Author
-
Armin Giese, Paul Tavan, Fabienne Leidel, Hans A. Kretzschmar, Markus Geissen, Martin H. Groschup, Martin Eiden, Thomas Hirschberger, and Hermann M. Schätzl
- Subjects
Gene isoform ,Proteasome Endopeptidase Complex ,PrPSc Proteins ,animal diseases ,Blotting, Western ,Biophysics ,Scrapie ,Kaplan-Meier Estimate ,Biology ,Inhibitory postsynaptic potential ,Biochemistry ,Piperazines ,Pathogenesis ,Mice ,chemistry.chemical_compound ,In vivo ,Cell Line, Tumor ,medicine ,Animals ,Piperazine ,Molecular Biology ,Molecular Structure ,Neurodegeneration ,Brain ,Cell Biology ,medicine.disease ,Molecular biology ,In vitro ,nervous system diseases ,Mice, Inbred C57BL ,chemistry ,Injections, Intraperitoneal - Abstract
Prion diseases are fatal neurodegenerative disorders, which are not curable and no effective treatment exists so far. The major neuropathological change in diseased brains is the conversion of the normal cellular form of the prion protein PrPc(C) into a disease-associated isoform PrP(Sc). PrP(Sc) accumulates into multimeres and fibrillar aggregates, which leads to the formation of amyloid plaques. Increasing evidence indicates a fundamental role of PrP(Sc) species and its aggregation in the pathogenesis of prion diseases, which initiates the pathological cascade and leads to neurodegeneration accompanied by spongiform changes. In search of compounds that have the potential to interfere with PrP(Sc) formation and propagation, we used a cell based assay for the screening of potential aggregation inhibitors. The assay deals with a permanently prion infected cell line that was adapted for a high-throughput screening of a compound library composed of 10,000 compounds (DIVERset 2, ChemBridge). We could detect six different classes of highly potent inhibitors of PrP(Sc) propagation in vitro and identified piperazine derivatives as a new inhibitory lead structure, which increased incubation time of scrapie infected mice.
- Published
- 2014
- Full Text
- View/download PDF
28. Identifying critical sites of PrPc-PrPScinteraction in prion-infected cells by dominant-negative inhibition
- Author
-
Hermann M. Schätzl and Yuzuru Taguchi
- Subjects
Gene isoform ,PrPSc Proteins ,Protein Conformation ,animal diseases ,Molecular Sequence Data ,Mutant ,Dominant negative ,Context (language use) ,Biology ,Biochemistry ,Prion Diseases ,Mice ,Cellular and Molecular Neuroscience ,Protein structure ,epicenter of structural changes ,Cell Line, Tumor ,Protein Interaction Mapping ,Animals ,PrPC Proteins ,Protein Interaction Domains and Motifs ,Amino Acid Sequence ,interaction interface ,Peptide sequence ,Sequence Deletion ,Genetics ,prion conversion ,Extra View ,Autophagy ,dominant-negative inhibition ,Cell Biology ,nervous system diseases ,Cell biology ,Infectious Diseases ,PrPC-PrPSc interaction - Abstract
A direct physical interaction of the prion protein isoforms is a key element in prion conversion. Which sites interact first and which parts of PrP(c) are converted subsequently is presently not known in detail. We hypothesized that structural changes induced by PrP(Sc) interaction occur in more than one interface and subsequently propagate within the PrP(C) substrate, like epicenters of structural changes. To identify potential interfaces we created a series of systematically-designed mutant PrPs and tested them in prion-infected cells for dominant-negative inhibition (DNI) effects. This showed that mutant PrPs with deletions in the region between first and second α-helix are involved in PrP-PrP interaction and conversion of PrP(C) into PrP(Sc). Although some PrPs did not reach the plasma membrane, they had access to the locales of prion conversion and PrP(Sc) recycling using autophagy pathways. Using other series of mutant PrPs we already have identified additional sites which constitute potential interaction interfaces. Our approach has the potential to characterize PrP-PrP interaction sites in the context of prion-infected cells. Besides providing further insights into the molecular mechanisms of prion conversion, this data may help to further elucidate how prion strain diversity is maintained.
- Published
- 2013
- Full Text
- View/download PDF
29. Prion strains depend on different endocytic routes for productive infection
- Author
-
Hanna Wolf, Suzette A. Priola, Ina Vorberg, Yvonne Duernberger, Katrin Riemschoss, Romina Bester, Shu Liu, Hermann M. Schätzl, Catharina Pleschka, Andrea Fehlinger, Martin H. Groschup, André Hossinger, and Lydia Paulsen
- Subjects
0301 basic medicine ,PrPSc Proteins ,Science ,animal diseases ,Endocytic cycle ,Cell ,Caveolin 1 ,Endocytosis ,Clathrin ,metabolism [Cell Membrane] ,Article ,Cell Line ,Prion Diseases ,03 medical and health sciences ,Mice ,Prion infection ,pathogenicity [PrPSc Proteins] ,medicine ,Animals ,Prion protein ,Tropism ,metabolism [Caveolin 1] ,Multidisciplinary ,biology ,Cell Membrane ,Biological Transport ,Virology ,nervous system diseases ,030104 developmental biology ,medicine.anatomical_structure ,Cell culture ,Cav1 protein, mouse ,metabolism [PrPSc Proteins] ,biology.protein ,Medicine ,ddc:600 ,metabolism [Prion Diseases] - Abstract
Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
- Published
- 2016
- Full Text
- View/download PDF
30. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells
- Author
-
Srinivasarao Karri, Sampson Law, Su Yeon Shim, Sabine Gilch, and Hermann M. Schätzl
- Subjects
0301 basic medicine ,Protein Folding ,Cell type ,PrPSc Proteins ,Protein Conformation ,animal diseases ,Endocytic cycle ,Gene Expression ,Plasma protein binding ,Biology ,Article ,Cell membrane ,Mice ,03 medical and health sciences ,Cell Line, Tumor ,medicine ,Animals ,Humans ,PrPC Proteins ,Transport Vesicles ,Neurons ,Multidisciplinary ,Vesicle ,Cell Membrane ,rab7 GTP-Binding Proteins ,nervous system diseases ,3. Good health ,Transport protein ,Cell biology ,Protein Transport ,030104 developmental biology ,medicine.anatomical_structure ,nervous system ,rab GTP-Binding Proteins ,Cell culture ,Lysosomes ,Protein Binding - Abstract
Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrPSc accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases.
- Published
- 2016
- Full Text
- View/download PDF
31. Erratum
- Author
-
Sascha Martens, Masashi Narita, Rajkumar Cheluvappa, Kevin A. Roth, Ta Yuan Chang, Kartik Venkatachalam, Chang-Shen Lin, Sharon G. Adler, Flaminia Pavone, Dianwen Ju, Michelle A. Ozbun, Michael R. Duchen, Shu Feng Zhou, Wei-Guo Zhu, Aaron Di Antonio, Defeng Wu, Taixing Cui, Xu Guang Guo, Zhiping Xie, Lorena García Nannig, Eloy Bejarano, Stéphane D. Lemaire, Petro Starokadomskyy, Hyung Ryong Kim, Mario Pinar, Rebecca T. Marquez, Zvenyslava Husak, Anthony R. White, Joanna Poulton, Antonis S. Zervos, Shweta Sharma, Jochen Walter, Nicholas T. Ktistakis, Christopher H.K. Cheng, Sunhee Lee, Yuen Li Chung, Howard O. Fearnhead, Young J. Oh, Ivano Amelio, Guillermo A. Blanco, Jan Simak, Junfang Wu, Yingying Lu, Mary Kate McBrayer, Soo Han Bae, Ichizo Nishino, Hong-Ming Hu, Benjamin R. Underwood, Tomonori Kimura, Zexian Liu, Savithrama P. Dinesh-Kumar, Qian Yang, Andreas Kern, Hsing Jien Kung, Jan B. Parys, Cam Patterson, Celine Perier, Toshiro Okazaki, Daisuke Koya, Avinash Sonawane, Cédric Cleyrat, Robert I. Richards, Kai Y. Soo, Rodrigo Mora-Rodriguez, Gigi N.C. Chiu, Moon Moo Kim, Vladimir N. Uversky, Shengfang Ge, Matthew T. V. Chan, Irene Kyrmizi, Lara Gibellini, Ángela M. Valverde, Erik Norberg, Fan Zhang, Jan C. Koch, Alec C. Kimmelman, Jingfang Ju, Jie Bai, Lei Duan, Paulina Ordonez, Shuwen Liu, Wolfdieter Springer, Eric Deutsch, Elena Ortona, Jose M. Seguí-Simarro, Vinay Choubey, Leonidas Stefanis, Robert G. Hawley, Claudia Bincoletto, Xian-Hui He, Zhifen Yang, Thomas M. Durcan, Martine Biard-Piechaczyk, Kui Lin, Hongming Pan, Konstantinos Kambas, Cristina Muñoz-Pinedo, Marta Magariños, Yoshinori Takahashi, Adrienne M. Gorman, Philippe Gailly, Takahiko Akematsu, Justine D. Mintern, Liang Xu, Tetsuo Shioi, Luis M. Botana, Yule Liu, Yong Yeon Cho, Jinzhi Lei, Eung Kweon Kim, Alakananda Basu, Vikash Kumar Dubey, Candelaria Gomez-Manzano, Avital Eisenberg-Lerner, Chuan-Ming Xie, Wenjie Dai, Pedro Gonzalez-Alegre, Maria Condello, Zheng-Hong Qin, Zhi-Min Yuan, Catherine Andreadi, Anna Rita Migliaccio, Chong Liu, Michaël Boyer-Guittaut, Melanie Denizot, Esperanza Arias, Greet Van den Berghe, Guomei Tang, Timothy P. Devarenne, Xianyong Sheng, Louis R. Lapierre, J. Wade Harper, Zuzana Storchova, Aileen R. Ariosa, Sug Hyung Lee, Qi Zeng, Godefridus J. Peters, Daniela L. Papademetrio, Alexandre Arcaro, Zhiyuan Yao, Pablo Iribarren, Mario Chiariello, Maria Rosaria Torrisi, Parimal Karmakar, Yong Huang, Sebastiano Sciarretta, Nathalie Andrieu-Abadie, László Fésüs, Patricia Boya, Ruediger Rudolf, Leonor Miller-Fleming, Vasilis J. Promponas, Juan Segura-Aguilar, Paula Daza, Shiow Ju Lee, Songshu Meng, Paul K. Herman, Ludwig Eichinger, Ye-Guang Chen, Kay F. Macleod, Thomas Simmet, Cristina Corral-Ramos, Claudio Brancolini, Jun Ren, Ying Jiang, Benoît Derrien, Xiao Fang Yu, Qing Zhong, Zong Wan Mao, Xingcong Ren, Armando A. Genazzani, Marina Pierdominici, Sanbing Shen, Sandra Moreno, Hana Algül, Maurizio Renna, Ricardo Sánchez-Prieto, Ashok K. Saluja, Yasuo Uchiyama, Pope L. Moseley, Victor E. Dosenko, Chun-Feng Liu, Bakhos A. Tannous, Efthimios Sivridis, Baharia Mograbi, Michiko Shintani, Amanda S. Bess, Rodrigo Portes Ureshino, Avnika A. Ruparelia, Paul Hofman, Eric Chevet, Martha M. Monick, Hong Gang Wang, Daping Fan, Jorge Moscat, Giuseppe Matarese, Consiglia Pacelli, Young Seok Cho, Miriam Cnop, Stefan Böckler, Nikolai V. Gorbunov, Christina J. Sigurdson, Hang T.T. Nguyen, Aurélie François, Katarina Kågedal, Sam Gandy, Silvia Campello, Alain Bruhat, Filomena Fiorito, Hua Feng, Man Tian Mi, Gian Maria Fimia, Masaki Tanaka, Guofei Zhou, José L. Crespo, Heinz Jungbluth, Anna Chiara Nascimbeni, Arianne L. Theiss, Svetlana Dokudovskaya, Mar Lorente, Sergio Lavandero, Yu Xia Zhao, Fangming Lin, Yuchen Feng, Gad Galili, Silvia Cetrullo, Paula I. Moreira, Dhyan Chandra, Dimitrios J. Stravopodis, Roberta A. Gottlieb, Gregory A. Taylor, Longping Wen, Faqiang Li, Marco Sardiello, Umesh K. Jinwal, Francesca Belleudi, Lan Tan, Livia Di Renzo, Tamas Korcsmaros, Xinbing Sui, Douglas R. Green, Guillermo Mazzolini, Hervé Le Stunff, Kelly S. Doran, Mary E. Choi, Carlos S. Subauste, Natalia Rodriguez-Muela, Nicholas J. Talbot, Marta Palmieri, Sonia Hernández-Tiedra, Ligia C. Gomes, Irving M. Shapiro, Makoto Ubukata, Mario P. Tschan, Baris Bingol, Benjamin Loos, Terry Kwok, Luca M. Neri, Sreejayan Nair, Michele Wolfe Bianchi, Ralf Erdmann, Alexander Greenhough, Neeraj Vij, Jeong Hun Kim, Satoaki Matoba, Bo Liu, George R. Beck, Michael Moore, Vrajesh V. Parekh, Kyle A. Bauckman, Li-Lin Du, Mikihiro Fujiya, Yan G. Zhao, Renaud Legouis, Jiangwei Zhang, Kailiang Jia, Nadezda Apostolova, Sehamuddin Galadari, Khosrow Adeli, Ming Yong Zhang, Carmela Fusco, Angel Ortega, Anna Pensalfini, Zsuzsanna Szatmári, Marco Tafani, Isabella Ceccherini, Anne Hamacher-Brady, Kuen Jer Tsai, Anita C. Truttmann, Franco Fortunato, Keisuke Miyazawa, Chunhai Fan, Berge A. Minassian, Jian Zhang, Frank A. Anania, Heesun Cheong, Amal O. Amer, Ing Swie Goping, Won-Ki Huh, Anita Solhaug, Joan Cl ria, Laurent Le Cam, Seungmin Hwang, Karen L. Wright, Antonella De Matteis, Troy T. Rohn, Ivana Bjedov, Subbiah Pugazhenthi, Hal E. Broxmeyer, Xue Yuan Bai, Koenraad Norga, Minnie M. Sarwal, Daniel F. Schorderet, Ioannis P. Nezis, Mei Qing Wang, Jun Hee Lee, Yong J. Lee, David A. Tumbarello, Fernando Macian, Joern Dengjel, Dmitry V. Bulavin, Andrew J. Halayko, Ben Berkhout, Aseem Pandey, Santosh Kesari, Karin Przyklenk, Elena V. Tchetina, Matthew L. Albert, Laura Segatori, Joel N. Meyer, Mustapha Rouis, Éva Margittai, Ashish Jain, David Hahn, Thomas Vaccari, Lori R. Covey, Ghanshyam Swarup, Kuo Yang Huang, Gennaro Napolitano, Sam W. Lee, Seong Who Kim, Alberto Anel, Vladimir V. Rogov, Laura A. Carleton, Amine Belaid, Byoung Kuk Jang, Sheng-Han Kuo, Patricia L. Yeyati, Jae U. Jung, Teresa Zoladek, Sabrina Di Bartolomeo, Clémence Richetta, Peixin Yang, Daniela Trisciuoglio, Hye Seung Jung, Katsumi Higaki, Eui-Bae Jeung, Ivan Topisirovic, Isabella Caniggia, Susan E. Logue, Issidora S. Papassideri, Lynda A. Morrison, Caihong Wang, Graeme Sargent, Beth Levine, Mingxiang Ye, David M. Sabatini, Consuelo Amantini, Julio A. Aguirre-Ghiso, Lawrence H. Boise, Patricia Silvia Romano, Sean T. Sweeney, Takayuki Tsukuba, Reinhard Dechant, Benoit Barbeau, Marta Martinez-Vicente, Kuo How Huang, Edésio José Tenório de Melo, Faustino Mollinedo, José M. Fuentes, Joaquín Jordán, Dong-Hyung Cho, Dexian Zheng, Jeroen J.M. Hoozemans, Zhong Chen, Waleska Kerllen Martins, Abraham Acevedo Arozena, Marcos P. Thomé, Gordon C. Shore, Fabienne C. Fiesel, Teng Jiang, Feng Han, Marc Poirot, Anne Sophie Nicot, Eileen White, Olivier Feron, Arthur I. Cederbaum, Wen Bin Qian, Yingjie Sun, Rejko Krüger, Shingo Kajimura, Jianzhen Xu, Shang Der Chen, Maximiliano G. Gutierrez, Zhengping Yu, Jiaren Sun, Utpal Sen, Giovanna Galliciotti, Hilde Nilsen, Benjamin T. Kopp, Benedikt Westermann, Inmaculada Galindo, Eeva-Liisa Eskelinen, Rubem F. S. Menna-Barreto, Guillermo Mariño, Andrea Ballabio, Izabela Poprawa, Yanjin Zhang, Clay F. Semenkovich, Martin E. Fernandez-Zapico, Helin Vakifahmetoglu-Norberg, Hongchi Jiang, Eugenia Morselli, Angelo A. Manfredi, Marianne Boes, Han-Jung Chae, Covadonga Alonso, Min Chen, Safia Costes, David Kessel, Rakesh Kumar, Yang Zhang, Reinhild Prange, Vassiliki E. Mpakou, Laura Santambrogio, Javier E. Irazoqui, Anna Skwarska, Junichi Sadoshima, Rika Umemiya-Shirafuji, Michael I. Koukourakis, Norma Maugeri, Yuqing Wang, Pedro R. Cutillas, Jiqin Lian, Jiri Stulik, Takashi Ueno, Craig Montell, Rena Balzan, Meiyan Jin, Mara C. Duncan, Cathleen R. Carlin, Yasuo Yanagi, Maite G. Fernandez-Barrena, Yuyan Xiong, Martin Graef, Wei Yuan Yang, Renato V. Iozzo, Mark Screen, Patrick Brest, Haichao Wang, Ming Tan, Werner J. Kovacs, Weili Shen, Alessandro Fraldi, Paul Saftig, Alberto Faggioni, Krisna Prak, Christos E. Zois, Timothy E. Weaver, Marc Lecuit, Yu-Ying He, Michele Caraglia, Walter Balduini, M. Isabel G. Roncero, B. Schneider, Monika Cahova, Mathias Faure, Chihiro Sasakawa, Simon Michaeli, Sandy Giuliano, Dario C. Altieri, Eun-Kyeong Jo, Myung-Shik Lee, Carol Imbriano, John H. Brumell, Gustavo H. Goldman, Yan Wang, Junyan Shi, Quan Chen, Jayanta Debnath, Yonggeun Hong, Mohamed Amessou, Richard W. Wong, Robert E. Burke, Mauro De Santi, Trevor G. Shepherd, Anna Maria Joseph, Wouter G. van Doorn, Erkang Fei, Huey Lan Huang, F. Gisou van der Goot, Xinfeng Liu, Alexandru Almasan, Akiko Maeda, Yu Qiu, Yaohua Wu, Annie Sittler, Wen-Xing Ding, Wenhua Zhu, Hung-Jen Liu, Moisés Martínez-Velázquez, Jeffery S. Cox, Seung Yong Yoon, Concepcio Marin, Wilian A. Silveira, Fulvio Chiacchiera, W. Douglas Fairlie, Jian Xin Gao, Shuilong Leng, Nathan R. Brady, Josef M. Penninger, Puran Singh Sijwali, Florian Gruber, Tibor Vellai, Jiunn-Liang Ko, Laura Korhonen, Slimane Ait-Si-Ali, Hirokazu Arimoto, Alberto M. Martelli, Teresa L. M. Thurston, Chuanshan Xu, Kathrin Pallauf, Eduardo Couve, Shweta Saran, Lionel Blanc, Maylin Almonte-Beceril, Yong-Keun Jung, Lena Lavie, Junsoo Park, Camilla Palumbo, Claire H. Mitchell, Sophie Pattingre, Guillermo Velasco, Steve S.-L. Chen, Xiu-Fen Ming, Xin Qi, Vania Gelmetti, Nicolas Dupont, Soraya S. Smaili, Chinnaswamy Jagannath, Uta Dahmen, Daolin Tang, Rodrigo Franco, John H. Kehrl, Xiaonan Dong, Carsten Sachse, Jeff Kuret, Genzou Takemura, Supawadee Sukseree, Joëlle Botti, W. Haung Yu, Aurelia Lugea, Scott J. Bultman, Divaker Choubey, Frank A. Sinicrope, You-Wen He, Jian Wu, Yoshitaka Isaka, Geert Bultynck, Giuseppe Merla, Luigi Maiuri, Sonia Melino, Hannelore Maes, Daniele Lettieri Barbato, Ian G. Ganley, Zhihong Yang, Daniel Hofius, Kimberly McCall, Peiwen Chen, Istvan Lekli, Alicia Rosello, Eric Ghigo, Atsushi Kuno, Iman Tavassoly, Chris Albanese, Agustín Aranda, Salvatore Pepe, Hong Jiang, Henri Batoko, Giovanna Elvira Granato, Vincent Zecchini, Stephen E. Girardin, Maria T. Diaz-Meco, Philippe Marambaud, G. Amadoro, Sangeeta Khare, Christelle Koechlin-Ramonatxo, Emery H. Bresnick, Christian Behl, Mikio Nishimura, Julien Puyal, Wenjie Guo, Hsinyu Lee, Carolyn M. Sue, Derrick Gibbings, Alina Maloyan, Philippe Pierre, Serge N. Manié, Gerry Melino, Elizabeth A. Woodcock, Roberto Ciarcia, Liwen Jiang, Michael C. Kruer, Vladimir Trajkovic, Yunjiao Zhang, Nina Raben, Beata Pajak, Michael J. Ragusa, Riccardo Autelli, Kelly Jean Thomas, Suzana Gispert, Wei Li Zhao, Cheol Hyeon Kim, Pothana Saikumar, Arsenio Fernández-López, Juliano Machado, Valentina Iovane, Cai Ping Tan, Carmine Settembre, Neelam Azad, Yohta Shimada, Shivendra V. Singh, Hai Rao, Hirosato Mashima, Michael T. Stang, Yasuhito Sakuraba, Gemma Fabriàs, Tuck Wah Soong, Didac Carmona-Gutierrez, Ilse Vanhorebeek, F. Javier Oliver, Mondira Kundu, Alfonso Schiavi, Dan Lindholm, José L. Revuelta, Jason S. King, Susana Castro-Obregón, Paul Digard, Hua Zhu, Komal Raina, Yun Dai, Ruben K. Dagda, Nuria Martinez-Lopez, Andrea A. Gust, Lucia Notterpek, Robert Clarke, Manon E. Wildenberg, Mingzhou Chen, Leticia Reyes, Laura Berliocchi, John J. McMahon, Hongzhuan Chen, E.M. Nolte, Stefan W. Ryter, Fulvio Reggiori, Jiefei Geng, Michael A. Mandell, John H. Fingert, Holger Prokisch, Marina Jendrach, Søren R. Paludan, Elizabeth P. Henske, Ricardo Gargini, Wei-Xing Zong, Susmita Kaushik, Michael Overholtzer, Paul W. Sylvester, Daniel E. Voth, Canhua Huang, Andrea Boman, Gérard Lizard, Rut Valdor, Marc Flajolet, Graham S. Taylor, Nicola Di Daniele, Leonardo H. Travassos, Ying Yang, Anumantha G. Kanthasamy, Hasan Mukhtar, Yuhua Zhu, Noor Gammoh, Ignacio Vega-Naredo, Victoria Ryabovol, Sara W. Bird, Gang Min Hur, Qun-Ying Lei, Fan Yi, Laura Caberlotto, Maria F. Galindo, Bilal Piperdi, Leonidas C. Platanias, P. Hande Özdinler, Régis Delage-Mourroux, Julio Madrigal-Matute, Xu Liu, Nagio Takigawa, Aurora Pujol, Marta Margeta, Hee Jeong Kong, Christian Behrends, Michael Thumm, Shirley Luckhart, Emilio Clementi, John W. Steele, Liliana Schaefer, Philip L. Lorenzi, Chao-Yu Miao, She Min Lu, Jane E. Ishmael, Jin Hyoung Kim, V. Izzo, Yanming Wang, Balindiwe J.N. Sishi, Vincent Galy, Andras Perl, Shouqing Luo, Giovanni Vitale, Yongsheng Che, Rodrigo Troncoso, Liu Yang, Thomas J. Begley, Sebastien G. Bouret, Elizete Rizzo, James M. Piret, Junjun Wang, Herman P. Spaink, Thomas S. Jacques, Robin F. B. Turner, Young H. Lee, Eva Szegezdi, Daphne R. Goring, Manish K. Aghi, Rui Kang, Bart Staels, Midori Umekawa, Delia Goletti, Robert J. Bryson-Richardson, Ubaldo E. Martinez-Outschoorn, Luisa Dalla Valle, Giovanni Luca Gravina, Emad S. Alnemri, Maria Kaparakis-Liaskos, Konstantinos Ritis, Shalmoli Bhattacharyya, Alessandra Bolino, Xiaonan Zhao, Yoshihisa Watanabe, Christian Ungermann, Juan L. Iovanna, Katherine Williams, Ken Shirabe, Teresa S. Hawley, Sara Cherry, Ryuichiro Atarashi, Kozo Hamada, Seamus J. Martin, Shigeru Oshima, Mario Pende, Illana Gozes, Michel A. Duchosal, John J. Shacka, Shunhei Yamashina, Kithiganahalli Narayanaswamy Balaji, Richard L. Proia, Besim Ogretmen, Fang Hua, Koichi Araki, Charles Grose, Jia Luo, Helen K. W. Law, Charles Swanton, Liat Drucker, Guo Zhang, Zhizhuang J. Zhao, Anne K. Kenworthy, Javier A. Menendez, Gary Grant, Stig U. Andersen, Frank Lafont, Aparna Lakkaraju, Taijoon Chung, Leticia A.M. Carneiro, Monique Bernard, Gang Chen, Stephen W.G. Tait, Aimee L. Edinger, Jeffrey P. MacKeigan, Paul A. Ney, Mireia Niso-Santano, Valeria Crippa, Andreas S. Reichert, Isabelle Dugail, Jon D. Lane, Farida V. Minibayeva, Gianluca Tettamanti, Scott Pattison, Péter Lõrincz, Kamal Chowdhury, Ulrich E. Schaible, Maria Agnello, Paolo Pinton, Niels Jessen, Lei Guo, Kwang-Huei Lin, David N. Zacks, Ying Jan Wang, Simone Fulda, John J. Lemasters, Andrea Viale, Anna Maria Marconi, Valerie Askanas, Yoshitaka Nagai, François M. Vallette, Joan K. Heath, Srinivasan Dasarathy, Soo-Youl Kim, Günter U. Höglinger, Tamara Kravic-Stevovic, Iraide Alloza, Tiago F. Outeiro, Ana Serrano-Puebla, Elena A. Minina, Terrence M. Donohue, Ming Guo, Alexandra Giatromanolaki, Abdel Halim Harrath, Ken Sato, Anne Elisabeth Theron, Usha P. Andley, Claudio Cardinali, Maija Pesonen, Penny E. Lovat, Chanhee Kang, Sabah N. A. Hussain, Lisa A. Brennan, Jose A. Tapia, Christoph Becker, Huixin Yu, Pei-Yu Wang, Bertrand Joseph, Zhen Yan, Georgia Minakaki, Ricardo Escalante, Ralph A. Nixon, Katsuhiko Asanuma, M. Helena Vasconcelos, David J. Reiner, Shengkan Jin, David Dávila, Theo Rein, Balakrishna L. Lokeshwar, Antonio Miranda-Vizuete, Carl Ward, Vito Turk, Frederick D. Quinn, Katja Köhler, Masaru Harada, Kathleen Boesze-Battaglia, Fraser P. Coxon, Paulo R. Jannig, Miguel A. Peñalva, Manjula Kalia, Marco Corazzari, Chunjuan Song, Xianghua Yan, Lilach Toker, Benjamin Pineda, Vanessa Ginet, Ye Xu, Chun Jung Chen, Roberto Towns, Amy A. Kiger, Rajagopal Ramesh, Maria Rita Rippo, Joseph A. Hill, Boris Zhivotovsky, Peter Speck, Ya Hua, Peter J. Roach, Fabio Penna, Kasper M.A. Rouschop, Jeng-Jer Shieh, Maria Angeles Mena, Mei Zhao, Sonia Rocha, Xin Wen, Sylvain Lefort, Michael Scharl, Ramnik J. Xavier, Alan Cheng, Marion Bouchecareilh, Stella Y. Lee, Maria Xilouri, Qi Chen, Claudia Spies, Pengfei Ge, Natascia Ventura, Luca Galluzzi, Yau Hung Chen, Jing Pu Zhang, Diego Albani, Dingzhong Tang, Nikolai Engedal, Stefania Meschini, Maria Lyngaas Torgersen, Shibu M. Poulose, Jean-Paul Decuypere, Ziheng Xu, Jocelyn Laporte, Thierry Arnould, Albert Haas, Ida J. van der Klei, Agustín Hernández, Dong Wook Shin, Per E. Stromhaug, Valentín Ceña, Ugo Pagnini, Karolina Pakos-Zebrucka, Blagovesta Popova, Lisa M Lindqvist, Sangita C. Sinha, Yuguang Shi, Zvonimir Marelja, Robin Candau, Xin Wang, Evelina Gatti, Olatz Pampliega, Michael P. Lisanti, Elena Tamagno, Mei Lan Tan, Gary Warnes, Zdena Palková, Shigeomi Shimizu, Ingo Schmitz, Tino Kurz, Soledad Matus, Gopal Chakrabarti, Joseph J.Y. Sung, Beáta G. Vértessy, Giuliana Cassinelli, Giovanni Benard, Yin Chen, Emma Colucci-Guyon, Craig Blackstone, Lizhi Cao, Sebastian Schuck, Qingqiu Gong, Theocharis Panaretakis, Jayoung Choi, Sven R. Carlsson, Libuše Váchová, Raymond Chuen-Chung Chang, Yang Liu, Zheng Dong, Qinghua Shi, Hélène Duez, Tiziana Bachetti, Axel H. Schönthal, Sumit Sahni, Bo Wang, Naomichi Matsumoto, Markus Rehm, Liliana Torosantucci, Toren Finkel, Yi Hsin Tseng, Hsiang Cheng Chi, Fang Lin, Tony George Jacob, Ju-Xian Song, Alessandro Fanzani, Marc Tatar, Paola Costelli, Rubén Gómez-Sánchez, Yunfei Wen, Juha J. Hulmi, Francesca V. Mariani, Min Zeng, Chiung Chyi Shen, Carine Michiels, Yan Burelle, Andreas L. Serra, Goran Petrovski, Kwang Woon Kim, Paula Ludovico, Darius Ebrahimi-Fakhari, Yee Joo Tan, Luisa De Martino, Alvaro Glavic, Pierre Lapaquette, Edmund B. Rucker, Andreas Mayer, Shigeko Yamashiro, Scott K. Powers, Robert M. Gogal, Ebru Goncu, Yuichiro J. Suzuki, Anna Maria Giammarioli, Claudio Hetz, Eric H. Baehrecke, Cheryl L. Walker, Cinzia Lanzi, Deepti S. Wilkinson, Ralph Feuer, Long Yi, Virawudh Soontornniyomkij, Nektarios Tavernarakis, Nobuyuki Nukina, Elisabetta Ferraro, Thomas Wollert, Vassiliki Karantza, Simon Wilkinson, Yong Tae Kwon, Panagiotis D. Velentzas, Jong-In Park, Huu Phuc Nguyen, Miriam J. Schönenberger, Marcello Chieppa, Thomas A. Ferguson, Behzad Yeganeh, Saurabh Chatterjee, Anika Nagelkerke, Ju Hong Jeon, David W. Russ, Jeff W. Chen, Verónica I. Dumit, Chuangui Wang, Stephen C. Pak, Georgios Chamilos, Vijittra Leardkamolkarn, L. Ashley Cowart, Miguel A. Martín-Acebes, Andrea Cossarizza, László Orosz, X. Charlie Dong, Kei Watase, Yasuko Rikihisa, Santiago Rodríguez de Córdoba, Yu Jen Chen, Andrew P. Lieberman, Peter G.H. Clarke, Guylène Page, Babak Razani, Franziska Wild, Guang Zhou Zhou, Tsui-Fen Chou, Gen Sheng Wu, Daniel Johnson, Jiwu Wei, Rani Ojha, Marco Molinari, Manolis Fanto, Yongjun Jiang, Nadine Camougrand, Rong-Rong He, Ivan Dikic, Candece L. Gladson, Naoki Suzuki, Shiming Liu, Felipe X. Pimentel-Muiños, Alicia Meléndez, José Antonio Sánchez-Alcázar, Maho Hamasaki, Carmen Ruiz-Roldán, Hana Schmeisser, Margarita Villar, Vinod Sundaramoorthy, Maria Beatrice Morelli, Naweed I. Naqvi, Jochen Klucken, Nirmala Parajuli, Rodney J. Devenish, Mari L. Shinohara, J. Lindsay Whitton, Marie-Josée Boucher, Jeroen Roelofs, Xiao Hong Liu, Saverio Minucci, Germán Bou, Katie R. Martin, Hermann M. Schätzl, Suresh C. Tyagi, Shengzhou Wu, Michael T. Lotze, Albert R. La Spada, Channing J. Der, Gabriela Roca, Lucile Espert, Elisabeth Corcelle-Termeau, Zhenyu Yue, Sabine Hilfiker, Evripidis Gavathiotis, Truong Lam, Tobias M. Rasse, Kumaravel Somasundaram, Chih-Wen Shu, Tamotsu Yoshimori, Daniel T. Starczynowski, Oliver Florey, Vladimir Kirkin, Dan T. Vogl, Peter Vandenabeele, Allan Tsung, Renwick C. J. Dobson, Serge Mostowy, Nelly Godefroy, Maria Teresa Viscomi, Young Ho Koh, Caroline Mauvezin, Keiji Tanaka, Juan Fueyo, Lih-Shen Chin, Jingjing Cai, Laura D. Osellame, Maurizio Battino, Małgorzata Gajewska, Maria I. Vaccaro, Darius J.R. Lane, Yuji Ogura, Ian G. Mills, Gil Leibowitz, Joan Villarroya, Yu-Chen Hu, Maria Teresa Batista, Vojo Deretic, Manoj B. Menon, Zhenyi Ma, Dawit A. P. Gonçalves, Iban Seiliez, Enzo Emanuele, Ho Shin Gwak, Arnim Pause, Francesca Palladino, Cristiano Simone, Angelica M. Merlot, Peng Wang, Liang Ge, Kenneth Maiese, Ken Cadwell, Sally S. Atherton, Deepak Shukla, Thomas Neill, Jean-François Beaulieu, Barry Jutten, Cristina P.R. Xavier, James Murray, Tatsuya Saitoh, Roberto Chiarelli, Benedetto Grimaldi, Antonio Giordano, Yanjun Kou, Cathy Tournier, Romana T. Netea-Maier, Rui Li, Jason L. Eriksen, Colin D. Weekes, Esther Barreiro, Denis Mottet, Derek P. Narendra, Karl Swärd, Stephanie E. Wohlgemuth, Gary A. Silverman, Yukitoshi Nagahara, Mark J. Walker, Roland Malli, Diane M. Ward, Ling Hua Meng, John D. MacMicking, Cinzia Fabrizi, Marco Tucci, Tomasz M. Stepkowski, Wannian Yang, Yi Zhen Deng, Daret K. St. Clair, Darren J. Moore, Michael Lee, Katia Aquilano, Norbert Frey, Tibor Kovács, Ru Jeng Teng, Federico Pietrocola, Alfredo Criollo, Nadia Jaber, Walter T. Klimecki, Xiaohong Zhuang, Beata Sikorska, Inmaculada Tasset-Cuevas, Iwona A. Ciechomska, Robert C. Dickson, Haruo Kanno, Hua She, Xiaolei Xu, Maria Laura Avantaggiati, Isei Tanida, Jun Li, Diego Pérez-Rodríguez, Agnieszka Bagniewska-Zadworna, Viktor I. Korolchuk, Thirumala-Devi Kanneganti, Simone Nardin Weis, Thorsten Nürnberger, Guanghui Wang, Luigi Puglielli, Valina L. Dawson, Santosh Chauhan, Carole Kretz-Remy, Po-Yuan Ke, Haijun Bao, Patrícia Sampaio Tavares Veras, Sharad Kumar, Guo-Qiang Chen, Congfeng Xu, Annie M. Joubert, Diego L. Medina, Andrea Hamann, Christian Münz, Hongchuan Jin, Zhen Chen, Cristina López-Vicario, Seung Il Choi, Ivanka Markovic, Ronit Pinkas-Kramarski, Lei Jin, Yonghyun Kim, Michael J. Clague, James D. Johnson, Areti Pantazopoulou, Mohamed Al-Rubeai, Si Chen, Anne Spang, Matteo Bordi, Xiaowei Wang, Stefanie Pöggeler, Terrence M. Donohue-Jr, Aldrin V. Gomes, Jawahar L. Mehta, Yuuki Fujiwara, Mihai G. Netea, Ezra E.W. Cohen, Yunfei Huang, Do Hyung Kim, Guido Lenz, Qian Cai, Chenran Wang, Anna Katharina Simon, Barbara Del Bello, Robert Layfield, Taehoon Chun, Margit Burmeister, Wei Liu, Peter D. Adams, C. K.James Shen, Iva Slaninová, Kathleen W. Scotto, Erinna F. Lee, Mireille Verdier, Fernando J. Peña, Nicola Brunetti-Pierri, Eun-Kyoung Choi, Aleksandra Isakovic, Ju-Hyun Lee, Swapan K. Ray, Ming Chang Hu, Stephen Baghdiguian, Davide Cervia, Brent R. Stockwell, Maurizio Sorice, Andreas Till, Victor M. Darley-Usmar, Horng-Dar Wang, Ken H. Young, Yibin Feng, Néstor L. Uzcátegui, Andreja Erman, Manuela Antonioli, Alicia Torriglia, Michael D. Kim, Kazuyuki Kuchitsu, Fabio Di Domenico, Claudia Giampietri, Fuyong Song, Kevin E. Behrns, Craig Stevens, A. Sue Menko, Joana Liberal, Antonio Di Pietro, Xuejun Jiang, Joseph D. Mancias, Maria Tiziana Corasaniti, Frédéric Gros, Fuxin Wang, Jeremy Thorner, Areechun Sotthibundhu, Gijs R. van den Brink, Andrei S. Chagin, Rossella Menghini, Francesca Bernassola, Chi Li, Sung Gil Chi, Enrico Milan, Jean M. Mulcahy Levy, A. Murat Kaynar, Maria João Sousa, Olga Corti, Simone Cenci, Ting-Fang Wang, Carlos Hernández, Sucheta Telang, Zun-Ji Ke, Atsuo Amano, Lihuan Du, Meera Nanjundan, Lin Zhang, Matthias Gaestel, Bertrand Kaeffer, Andrey S. Tsvetkov, Silvia Carloni, Kazuhisa Hasui, Rosa Puertollano, Vladimir Bumbasirevic, Yongchao Zhao, Carolyn B. Coyne, Allan Caplan, Per Ottar Seglen, Kotb Abdelmohsen, Andreas Buch Møller, Jenny P.-Y. Ting, Raquel Muñoz-Moreno, Markus A. Rüegg, Monica Hagedorn, Hao Zhang, Tomotake Kanki, Edoardo M. Airoldi, Melanie Schwarten, Alfred J. Meijer, Anne Bertolotti, Matteo Bergami, Joëlle Wiels, Claudia Cerella, Eric Asselin, Z. H. An, Spencer B. Gibson, Chunlai Wu, Kai Kaarniranta, Paloma B. Liton, Feng Jun Li, Roberta Nardacci, Ernst J. Wolvetang, Robert C. Bast, Mark S. Cragg, Quentin Liu, Massimo Federici, Hyun Kyu Song, Hua Bai, Xiaotao Li, Nils J. Færgeman, Jason Chesney, Shrawan Kumar Singh, Marcello D'Amelio, Mark Prescott, Georg Auburger, Shazib Pervaiz, Allen Taylor, Diane C. Bassham, Lei Wan, Michinaga Ogawa, Emilia Maellaro, Cynthia Y. He, Chris Jones, Paolo Grumati, Jun-Lin Guan, Hiroyasu Nakano, Eric A. Schon, Roswitha Krick, Yoshihiro Shidoji, Jaime L. Schneider, Dusica Maysinger, Thomas Thum, Paul G. Thomes, Edo Vellenga, Liang Liu, Giuseppe Filomeni, Niramol Savaraj, Rudolf A. Kley, Wei Jung Chen, Bradley L. Baumgarner, Victor H. Villar, Steven Finkbeiner, Kapil Sirohi, Francesco Cecconi, Steven S. Witkin, Steve Jean, André du Toit, Rossella Russo, Irina Petrache, Randy Schekman, Keisuke Hino, Wei Chen, Basil J. Petrof, Daniel E. Frigo, Gyun Min Lee, Paul N. Span, Megumi Inomata, Ivica Arsov, Zhi-Xiang Xu, Saeid Ghavami, Tania C. Felizardo, Konstanze F. Winklhofer, Weidong Han, Jianhua Zhang, Eva Maria Mandelkow, Lydia Alvarez-Erviti, Wanderley de Souza, Pawel P. Liberski, Yang Sun, Cornelia M. Weyand, William D. Hill, Eric J. Brown, Christopher M. Adams, Felix Randow, Jose Luis Rosa, Ivan R. Nabi, Patricia V. Aguilar, Laure Aurelian, Jae-sung Bae, Gábor Juhász, Hing Y. Leung, Karla Kirkegaard, Peter J. O'Dwyer, Daniele Bergamaschi, Thomas Farkas, Tsunenori Saito, Laura Knuppertz, Leyuan Liu, Dongxu Fu, Liesu Meng, Alon Kahana, Viktor Billes, Shohreh Issazadeh-Navikas, Ljubica Harhaji-Trajkovic, Xiangguo Liu, Takahiro Yamada, Ciro Isidoro, Huiping Zhou, William A. Dunn, Takeshi Into, Giampietro Viola, Eumorphia G. Konstantakou, G. William Wong, Peter W. Szlosarek, Jeffrey S. Isenberg, Mikkel H. Vendelbo, Zuzana Papackova, Carlos B. Gonzalez, Hong Zhang, Alkesh Jani, Heidi Kiil Blomhoff, Wen-Li Chen, Simon Sedej, François Bertrand Favier, Marina K. Holz, Mitsunori Fukuda, Gudmundur Vignir Helgason, Fu-Cheng Lin, Inés Díaz-Laviada, Stefaan J. Soenen, Chao Yung Wang, Chee Yin Chai, Pierre-André Bédard, Xiaoxiang Zheng, Peter V. Bozhkov, Han-Ming Shen, Hazel M. Davey, Pedro A. Lazo, Haoxing Xu, Fengtian He, Jean Max Pasquet, Benoit Pasquier, William T. Jackson, Stéphane Duvezin-Caubet, Bertrand Mollereau, Tomohiro Kabuta, Maria Rosa Ciriolo, Peter Hasselblatt, Nihar Ranjan Jana, Jane L. Armstrong, Elisa Giovannetti, Fang Lin Sun, Zhenyu Yao, Shuji Kishi, Pei-Hui Lin, Yingmei Zhang, Limor Avrahami, Kenichi Shibuya, Guillaume Dalmasso, Radovan Vasko, Sharon Prince, Valerie B. O'Donnell, Gordon B. Mills, Hiroshi Aoki, Maryam Mehrpour, Muniswamy Madesh, Guillermo Díaz-Araya, Susan L. Cotman, Marius K. Lemberg, Tilman Grune, Jing Lan Liu, Richard C. Wang, Sandro Goruppi, Hongmin Wang, Robert A. Heinzen, Xiangmei Chen, Nihal Altan-Bonnet, Sung Sik Lee, Hai Jie Wang, Catherine Dargemont, Jie Du, Sofie Claerhout, Edmond Chan, Yi Sun, Xiangbo Wan, Paul Lingor, Shilpa Buch, Gerald M. McInerney, Zhenlong Wu, Guo Chang Zhang, Iain A. McNeish, Suresh Awale, Mark P. Mattson, Srinivasa Subramaniam, Wuhan Xiao, Katsuhiko Mikoshiba, Giancarlo Parenti, Bruno Miguel Neves, Benjamin Dehay, Fatima Teixeira-Clerc, Patricia Huebbe, Calvin K. Yip, Ryan J. Schulze, Pallabi Sarkar, Vladimir I. Titorenko, Johanna Laukkarinen, Martin E. Gleave, Veronika Stoka, Pascal Genschik, Karen Brown, Zhaoliang Su, Walter Malorni, Arlette Darfeuille-Michaud, Vincent C. O. Njar, Jeffrey E. Pessin, Thomas Wileman, Alexander J. Whitworth, Stefano Santaguida, Gustavo A. Nader, Gláucia Maria Machado-Santelli, Marie-Josée Hébert, Skye C. McIver, Scott A. Soleimanpour, Jia-Hong Lu, Fei Liu, Yu Wang, Elisa Motori, Chad A. Dickey, Andrej Udelnow, Ahmed Hamaï, Junying Yuan, Jan Paul Medema, Michelangelo Campanella, Abhishek D. Garg, Pallavi Chandra, Marco Mongillo, Bonnie Bartel, Thomas Weide, Yong Joon Chwae, Nancy Y. Ip, Yoshiaki Kamada, Hikmet Budak, Jian Xiao, Mario D. Cordero, Wei Li, Muzamil Majid Khan, He Jin Lee, Meng-Chao Yao, Zu-Hang Sheng, Perrine Castets, Dongsheng Cai, Morten Petersen, Javier Díaz-Nido, Yong Lin, Kaio Kitazato, Yotaro Izumi, Beatrice Y.J.T. Yue, Des R. Richardson, Chunsun Dai, Michael Hensel, Ronit Sagi-Eisenberg, Chan Ding, Christian Sell, Idil Orhon, Wilhelm Krek, Qutayba Hamid, Salem Chouaib, Rajkumar Banerjee, Hsing Yu Tuan, Eyleen J. O’Rourke, Fathia Mami-Chouaib, Ryo Ushioda, Hidekazu Suzuki, Jie Fan, Anders H. Lund, Urban Emmenegger, Brigit E. Riley, Andrew Thorburn, Kailash Gulshan, Karol Dokladny, José M. Cuezva, Daniel T. Ruan, Salik Hussain, Mohamed Rahmani, Maria Teresa Bassi, Miquel Vila, Pavel Strnad, Terry H. Landowski, Christiaan Leeuwenburgh, Hagit Eldar-Finkelman, Francesco Fornai, Vincent Kam Wai Wong, Hengyi Xiao, Massimo Nabissi, Luciano Merlini, Chris Williams, Jatin M. Vyas, Motoko Sasaki, Chwen Ming Shih, Saveria Aquila, Marina Garcia-Macía, Po Wu Gean, Yasuo Kitajima, Gian Luigi Russo, Tania Zaglia, Arnaud Moris, Alessandra Stacchiotti, Elaine Gutierrez, Iain D. C. Fraser, Paolo Salomoni, Ramón Corbalán, Dave Bridges, Juan P. Liuzzi, Rosanna Parlato, Sandrine Silvente-Poirot, Carl G. Maki, Patty J. Lee, Paulo Pereira, Vitaliy O. Kaminskyy, Rajaraman Eri, Bertha Brodin, Tobias Eisenberg, Rong Yu Liu, Yide Mei, Pearl P.Y. Lie, Bradford G. Hill, Yoshio Fujitani, Angelika A. Noegel, Nadarajah Vigneswaran, Muriel Mari, Steven Grant, Davide Romanelli, Lee Ann MacMillan-Crow, Anna-Lena Ström, David Sulzer, Aditya Murthy, Lisa B. Frankel, Yong Ma, Ok-Nam Bae, Pablo Wappner, Chun Hei Antonio Cheung, Young Hyun Yoo, Andreas Linkermann, Kirill V. Rosen, Orsolya Kapuy, Simone Di Paola, Thomas J. Evans, Rosa A. González-Polo, Jin H. Son, Kinya Otsu, Tracey R. O’Donovan, Nicolas Pallet, Stefano Toldo, Wafik S. El-Deiry, Allen Kaasik, Jin Tai Yu, Susu M. Zughaier, Gordon W. Laurie, Barbara Guerra, Taeg Kyu Kwon, Priyamvada Dua, Stephen A. Spector, Yingyu Chen, Ayesha N. Shajahan-Haq, Wei Pan, Matthew Campbell, Leo A. B. Joosten, J. Paul Taylor, Julian J. Lum, Matthew J. Justice, Clarissa von Haefen, William K.K. Wu, Gerald Rimbach, Peter Polčic, Jens Schmidt, Saverio Bettuzzi, Xian De Liu, Satoru Kobayashi, Yan Zhang, Ling Tian, Péter Nagy, Mercedes Pozuelo-Rubio, Cheng Jin, Marek Los, Hiroyuki Ishida, Yuji Moriyasu, Maria Teresa Cruz, Jingjing Liu, Anil K. Sood, Roberto Mateo, Antonio Facchiano, J. Mark Cooper, Xiaofeng Yao, Pei Ming Yang, Eli Arama, Marc Diederich, Luc J. W. van der Laan, Robin Ketteler, James Harris, Eui Ju Choi, Grant R. Campbell, Julie D. Atkin, Janos Kriston-Vizi, Sharon L. McKenna, Mila Ljujic, Hirotaka Watada, Harry Ischiropoulos, Shile Huang, Udo Hasler, Ke Li, Josefina Casas, Ken-ichi Isobe, Min Li, Muriel Priault, Vincenzo De Tata, Monique Gannagé, Sakineh Kazemi Noureini, Isao Ishii, Sasanka Ramanadham, Valérie Pierrefite-Carle, Chengyu Liang, Louise Deldicque, Gabriella Cavallini, Afshin Samali, Angelika Amon, Kah-Leong Lim, Lavinia Cantoni, Demetrios G. Vavvas, James E. Haber, Alireza R. Rezaie, Regina Celia Bressan Queiroz de Figueiredo, Cynthia D. Cooper, Masaaki Komatsu, Silvia Alvarez, Gemma Triola, Dong-Yun Ouyang, Razaul Karim, Kostyantyn V. Dmytruk, Bassam Janji, Peter Bütikofer, Indira U. Mysorekar, Hana Popelka, E. Marion Schneider, Carlos Guillén, Gaël Roué, Seung-Hoon Baek, Patrick Auberger, Jun Araya, Sandra M. Cardoso, Gu He, Eduardo C. Filippi-Chiela, Patrick A. Lewis, Wei-Pang Huang, Eric Reits, Cécile Vindis, Trond Lamark, Mehrdad Alirezaei, Takao Setoguchi, Alberto Bartolomé, Chih Peng Chang, Andriy A. Sibirny, Mauro Piacentini, Jing Wang, Kuninori Suzuki, Ludo Van Den Bosch, Kevin N. Dalby, Keiran S.M. Smalley, David K. Ann, Luis F. Moita, Anthony Sanchez, Chin Hsu, Guillermo M. Albaiceta, Vassilis Stratoulias, Attila L. Kovács, Charleen T. Chu, Tewin Tencomnao, Audrey H. Poon, Steve Lancel, José C. Fernández-Checa, Hannah Rabinowich, Heinz D. Osiewacz, Sami Dridi, Kate E. Keller, Thorsten Hoppe, Crispin R. Dass, Jekaterina Erenpreisa, Akira Matsuura, Donna D. Zhang, Ying Zhao, Luisa Coletto, Roy Parker, Georg M. N. Behrens, Alessia Di Nardo, Mian Wu, Alberto Jiménez, Magdalena Rost-Roszkowska, Christopher J. H. Elliott, Pamela J. Yao, Damián Gatica, Rafael Linden, Helena L. A. Vieira, Anand K. Ganesan, Wim Martinet, Frank Madeo, Juliann G. Kiang, Helmut Kramer, Lorrie A. Kirshenbaum, Salvador Ventura, Clemens Steegborn, Zahra Zakeri, Marco Antonio Meraz-Ríos, Masaki Ohmuraya, Michael A. Riehle, Congcong He, Federica Sotgia, Shi-Mei Zhuang, Paul Dent, Jürgen Bosch, Xuejun Wang, Kuan-Chih Chow, Carlos Gorbea, Lisa Gerner, Yuzuru Imai, Jan Gunst, Duncan R. Smith, María Esther Pérez-Pérez, N. Tony Eissa, Michel Roberge, Carmen García-Ruiz, Irfan J. Lodhi, Hongjiao Ouyang, Mustapha Kandouz, Alessio Papini, Jun Sun, Takanobu Otomo, David H. Perlmutter, Jae-Sung Kim, Feng Gao, Åsa B. Gustafsson, Paul M. Salvaterra, Michael Klinkenberg, Or Kakhlon, Abhinav Diwan, Takahiro Shintani, Paola Matarrese, Marc D. Meneghini, Jinsheng Zeng, Xu-jie Zhou, Linda S. Yasui, Rui Sheng, Shiqian Huang, Elizabeth Delorme-Axford, Amélie Bernard, Kevin M. Ryan, Cecília M. P. Rodrigues, Jonathan M. Backer, Harald Stenmark, Hiroaki Adachi, Koichi Sakakura, Fatima Mechta-Grigoriou, Zhi Nong Wang, Ramesh Natarajan, Tian Xia, Marco Folini, Robert A. Screaton, Jane J. Yu, Xian Wang, Gerhard H. Braus, Min Wu, John A. Hanover, Anuj Kumar, Charbel Moussa, Shailendra Anoopkumar-Dukie, Edward A. Fon, Ted Powers, Thomas H. Kawula, Zhe Liu, Jennifer Martinez, Orian S. Shirihai, Mara Cirone, Fen Wang, Machiko Sakoh-Nakatogawa, Yong Xia, Durga Nand Tripathi, James T. Handa, Nadia Zaffaroni, Esther Wong, Carlos López-Otín, Michael E. Cheetham, Harm H. Kampinga, Leopold Eckhart, Paul de Figueiredo, Xueqin Liu, Michael S. Goligorsky, Valentina Sica, Marco Sandri, Wen Qiang Chen, Szabolcs Takáts, Lilach O. Lerman, Akio Kihara, Constantinos Koumenis, Sergio Comincini, Antoinette Lemoine, Marc Bitoun, Zhuo-Wei Hu, Yu Xiong Su, Jeremy C. Mottram, Miguel A. Sanjuan, Richard D. Vierstra, Angelo De Milito, Marjolein van Egmond, Xi-Long Zheng, Kun-Liang Guan, Katrin Juenemann, Ohkmae K. Park, Eisuke Itakura, Bo Yan, Tim Lahm, Yongshun Chen, Kenneth L. van Golen, Federica Rizzi, Guochang Hu, Volker Doetsch, Chengtao Her, Conrad C. Weihl, Jing Hsiung James Ou, Chiou Feng Lin, Dun-Sheng Yang, Bozena Gabryel, Xiao Feng Zhu, Jackie de Belleroche, Charles L. Edelstein, Julie Gavard, Miklós Sass, Maria Chiara Maiuri, Zhendong Zhao, Pu Duann, Julián Pardo, Atsuhiro Ichihara, Lester M. Davids, Swamynathan Ganesan, Shengyun Fang, Hernando Gomez, Yun Chau Long, Mark J. Czaja, Arnaud Echard, Pilar Gonzalez-Cabo, Chuanyong Guo, Katherine L. Cook, Isabel Varela-Nieto, Li Yu, Yi Ran Huang, Binfeng Lu, Athanassios D. Velentzas, Koji Yamanaka, Giuseppe Russo, Ester M. Hammond, Kelsey B. Law, Sheng Li, Samisubbu R. Naidu, Michael E. Boulton, Anna-Mart Engelbrecht, Ba-Bie Teng, Zixu Mao, Vania M.M. Braga, Núria S. Coll, Eliana M. Coccia, Akihisa Abe, V. Ashutosh Rao, Nava Segev, Regina Menezes, Zufeng Ding, Hyman M. Schipper, Álvaro F. Fernández, Peter K. Kim, Lucia Micale, Biplab Dasgupta, Nazzy Pakpour, Janna L. Morrison, Yue Qin Chen, Rolf J. Craven, Zvulun Elazar, Anders Aune Tveita, Lian Li, Hsueh Fen Juan, Ulrich Koenig, Qiang Shi, Harald W. Platta, Michele S. Swanson, Olga V. Voitsekhovskaja, Bruce H. Reed, Malene Hansen, Paola Lenzi, Sandra Cottet, Yacine Graba, Christian Frezza, Bernd Schröder, Helene Knævelsrud, Li Chung Hsu, Hyunjung Jade Lim, Michael T. Greenwood, Parco M. Siu, Kyu Lim, Dolores Pérez-Sala, Patrice Codogno, Yi Yang, Frank Lezoualc'h, Ida Perrotta, Elaine A. Dunlop, Jörg H W Distler, Ken Ichi Yoshida, Dominic P. Del Re, Luigina Romani, Hye Young Kim, Eric Jonasch, Rajesh Agarwal, Wei Song, Ai Yamamoto, Zully Pedrozo, Steffan T. Nawrocki, María Salazar-Roa, Jorrit M. Enserink, Dong Wang, Flaviano Giorgini, Takayuki Ohshima, Boris Turk, Anastasia S. Mihailidou, Rosa Salvioli, Anne Simonsen, Caroline Biagosch, Glauber Costa Brito, Junko Oshima, Gail V.W. Johnson, Emmanuel Taillebourg, Sovan Sarkar, Shane Deegan, Eldad Zacksenhaus, Laura Avagliano, Byung-Hoon Lee, Weiliang Xia, Paolo Paganetti, Timothy J. Lyons, Christine M. Stellrecht, Jane E.B. Reusch, Raquel T. Lima, Feng Xu, James M. Phang, Hongwei Xu, Claudio Luparello, Mohammad Ishaq, Maureen E. Murphy, Isabelle Coppens, Luc Dupuis, Elio Ziparo, Patrick J. Bednarski, Svetlana Saveljeva, Ashok Kumar, Hongxin Zhu, Tobias B. Huber, Günther Weindl, Claudine Kraft, Dhiraj Kumar, Sara Marinelli, Karin von Schwarzenberg, Lijun Jia, Tiziana Crepaldi, Ke Liu, Eleonora García Véscovi, Qing Lu, Cláudia N. Santos, Bertrand H. Rihn, Jun Yu, Fen-Biao Gao, Flavio Flamigni, Jason E. Gestwicki, Dong-Hun Bae, Gustavo C. MacIntosh, David A. Leib, Giorgio Santoni, Chin Yuan Hsu, Abdelhaq Rami, Joseph Satriano, Matthew J. LaVoie, Paloma Martín-Sanz, Daniela De Zio, Sharon M. Gorski, Yu Tian Wang, Shuyan Lu, Clara L. Oeste, Andrew R. Tee, Koji Itahana, Xuesong Yang, Shuiping Tu, Malathi Krishnamurthy, Anne M. Strohecker, Gui Xian Xia, Helena Orozco, Sujit K. Bhutia, Hongbo Hu, Rupert Beale, Ying-Ray Lee, Kai Mao, Pierre-Emmanuel Rautou, Jean Francois Groulx, James A. Mastrianni, Victoria El-Khoury, Koji Okamoto, Mark J. Taylor, Arianna L. Kim, José M. Izquierdo, Dalibor Mijaljica, Björn Stork, Thomas Schwarz, Savita Bhalla, Menno van Lookeren Campagne, Long Zhang, Elizabeth S. Yeh, Li Zhang, Tae Cheon Kang, Frederic Luciano, Shusaku Shibutani, Luciana Dini, Valentina Cianfanelli, Sara Calatayud, Yong-Sun Kim, Maurizio Molinari, Graham H. Coombs, Takeshi Noda, Angelo Poletti, Silvia Palumbo, Dhan V. Kalvakolanu, Valérie Vouret-Craviari, Volodymyr Y. Nazarko, Salvatore Florio, Noboru Mizushima, Arthur Kaser, Shigeki Miyamoto, Patric J. Jansson, Thomas I-Sheng Hwang, Daniel J. Jackson, Adrian L. Harris, Srikanta Dash, Yeong Min Yoo, David Colecchia, Ute C. Meier, Yi Ma, Tadashi Suzuki, Anand Krishnan V. Iyer, Flavia Radogna, Paul S. Brookes, Deepak Kumar, Gabriella D'Orazi, Barry Yedvobnick, David R. Soto-Pantoja, Christian Waeber, Craig McCormick, Dong Hu, Sarron Randall-Demllo, Gustavo J.S. Pereira, Emil Rudolf, Scott L. Friedman, Paolo Bonaldo, Oliana Carnevali, Guido R.Y. De Meyer, Alice Carrier, Yipeng Wang, Serena Montagnaro, Nadeem O. Kaakoush, José de la Fuente, Devrim Gozuacik, Edward D. Plowey, Alastair M. Buchan, John C. Chatham, Daniel J. Klionsky, Cecilia Gotor, Isabelle Hamer, Katarzyna Mnich, Paola Rusmini, Chengshu Wang, Per Nilsson, Lorena Esteban-Martínez, Raúl V. Durán, Dieter Willbold, Hye Won Chung, Janet D. Sparks, John M. Lucocq, Blake B. Rasmussen, Takeshi Matsuzawa, Hagai Abeliovich, Wiep Scheper, Sung Joon Lee, Jennifer S. Carew, Serena Carra, Michael J. Morgan, Nikolai Slavov, Guy Berchem, Tiziana Cocco, Simone Engelender, Jianbo Yue, Yujie Chen, Mario Fabri, Maria F. Czyzyk-Krzeska, Hua Niu, Roger J. Davis, Peter J. Adhihetty, Kishore B.S. Pasumarthi, Jongsook Kim Kemper, Sharon A. Tooze, Antonio Zorzano, Jin Cheon Kim, Jian Xu, Andreas Meryk, Kristina Vuori, Jongdae Lee, Patrizia Agostinis, Diego Ruano, Wim Vandenberghe, Julia I-Ju Leu, Céline Gongora, Bernadette Carroll, Vinoth Kumar Megraj Khandelwal, Bo Lu, Marja Jäättelä, Lorenzo Galluzzi, Ioannis P. Trougakos, Tatsuya Maeda, Marie-Agnès Bringer, Mario Chiong, Hans-Uwe Simon, Lance A. Liotta, Ruth S. Slack, Ina Oehme, Umamaheswar Duvvuri, Shaun Martin, Augustine M.K. Choi, Michel Vidal, Ying Wang, Isis do Carmo Kettelhut, Mojgan Djavaheri-Mergny, Jörn Coers, Massimo Donadelli, Jesus Aldudo, Miyuki Sato, Jianxun Liu, Jörg Höhfeld, Luc Van Kaer, Andrei I. Ivanov, Dohun Pyeon, José M. Bravo-San-Pedro, Jianxin Peng, Xiaoyan Jiang, Dimitri Krainc, Yangqing Xu, Arnaud François, P. Robin Hiesinger, Sagar Lonial, William C. Cho, Caty Casas, Betty Yuen Kwan Law, Hongbing Zhang, Tor Erik Rusten, Erwin Knecht, Honglin Luo, Shi Xiao, Hiromi Sesaki, Enza Maria Valente, Verónica Pérez de la Cruz, Marta M. Lipinski, David A. Hood, Shi-Yong Sun, Luiz Carlos Carvalho Navegantes, Joynal Abedin, Shino Goto-Yamada, Gustavo Maegawa, Takehiko Matsushita, Vitor A. Lira, Clara I. Rodríguez, Ekihiro Seki, Qiang Li, Karin Öllinger, Ted M. Dawson, Ssang-Goo Cho, Wan-Wan Lin, Pramod Kumar Garg, Jeffrey Robbins, Peter R. Williamson, Michael Sacher, Carlo Follo, Bulent Ozpolat, Xiao Jia Wang, Na Man, Hua Cheng, Bing Yan, Tsung-Hsien Chuang, Paul B. Fisher, Rajat Singh, Edward A. Ratovitski, Katsuhiko Kitamoto, Jung Jin Hwang, Shinji Hadano, Che Hsin Lee, Shuo Wang, Einar M. Sigurdsson, Camille Martinand-Mari, Agnieszka Sirko, Katherine R. Parzych, Etienne Morel, Yasushi Kitaoka, Hassan Chaachouay, Patricia Chakur Brum, Dexin Kong, Jerome Tamburini, Kuppan Gokulan, Stefan Olsson, Bilon Khambu, Lea M.D. Delbridge, Daniel P. Orban, David A. Gewirtz, Zhonglin Xie, Joe Quadrilatero, Kunikazu Tanji, Simin Mohseni, Gábor Bánhegyi, Jin Ming Yang, Jinxian Xu, Carmen Veríssima Ferreira-Halder, Addanki P. Kumar, Deok Ryong Kim, Jianjie Ma, Sang Won Suh, Guido Kroemer, Klára Megyeri, Michael N. Sack, Heinrich Taegtmeyer, Gilles Pagès, Gabriella Marfe, Gregg L. Semenza, Karine G. Le Roch, Marisa Brini, Marina Bouché, Oliver Kepp, Vinay V. Eapen, J. David Beckham, Stephan T. Stern, Xudong Zhang, Marcello Pinti, Xiangnan Zhang, Jae Keun Lee, Ana Coto-Montes, Assaf Rudich, Laura D. Attardi, Debabrata Ghosh, Philip Rosenstiel, Sébastien Besteiro, Maria Rosa Sarrias, R. Andres Floto, Xiao Ming Yin, Nicholas W. Lukacs, Hermann Pavenstädt, Matias Simons, Hitoshi Nakatogawa, Sandro Alves, Krisztina Takács-Vellai, Masato Koike, Debasish Sinha, Shoji Notomi, Faraj Terro, Maria Carmela Roccheri, Santiago Ambrosio, K. Ulrich Bayer, Yumin Li, Terje Johansen, Christian Kuhn, Yee Shin Lin, David C. Rubinsztein, Ziwei Qu, Ronit Shiri-Sverdlov, Emmanuel T. Akporiaye, Galila Agam, Hui Ling Chiang, Seung-Jae Lee, Yu Xue, Francesca Giampieri, Markus Damme, Tassula Proikas-Cezanne, Tianwei Lin, Marc Kantorow, Guang-Chao Chen, Qiangrong Liang, Claudia Manzoni, Joan S. Steffan, Emilio Boada-Romero, Damien Freyssenet, Sepp D. Kohlwein, Maria D. Barrachina, Yulin Liao, Jiankang Chen, Erika Isono, Hugo Seca, Mei Wang, Taras Y. Nazarko, Yannick Bailly, Nadya V. Koshkina, Tapas K. Maiti, Bärbel Rohrer, Karin Nowikovsky, James H. Hurley, Gerald W. Dorn, Nils C. Gassen, Kazuhiro Nagata, Eiki Kominami, A. Ivana Scovassi, Ana Maria Cuervo, Adi Kimchi, Minghua Yang, Sylviane Muller, Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Defense in Plant-Pathogen Interactions [Nagoya, Japan], Nagoya University-Graduate School of Bioagricultural Sciences [Nagoya, Japan], Facultad de Quimica [Santiago], Pontificia Universidad Católica de Chile (UC), Institute of Cancer Sciences [Glasgow, UK] (CR-UK Beatson Institute), University of Glasgow, Cell Death Research & Therapy (CDRT) Lab, Université Catholique de Louvain, Harvard University Statistics Department, Harvard University [Cambridge], Centre épigénétique et destin cellulaire (EDC (UMR_7216)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Conway Institute of Biomolecular and Biomedical Research and School of Chemical and Bioprocess Engineering, University College Dublin [Dublin] (UCD), Immunobiologie des Cellules dendritiques, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Biochemistry and Molecular Biology, Thomas Jefferson University-Sidney Kimmel Cancer Center, Jefferson (Philadelphia University + Thomas Jefferson University)-Jefferson (Philadelphia University + Thomas Jefferson University), Centro de Estudios Farmacológicos y Botánicos [Buenos Aires] (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Medicina [Buenos Aires], Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA), Thérapie génique, Génomique et Epigénomique (U 1169), Université Paris-Saclay-Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Sud - Paris 11 (UP11), Department of Experimental Medicine and Public Health, University of Camerino, MRC Toxicology Unit, University of Leicester, Génomique Fonctionnelle des Tumeurs Solides (U1162), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de médecine moléculaire de Rangueil (I2MR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IFR150-Institut National de la Santé et de la Recherche Médicale (INSERM), Departamento de Bioquímica y Biología Molecular y Celular, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Department of Pharmaco-Biology, Università della Calabria [Arcavacata di Rende] (Unical), Department of Molecular Genetics [Rehovot, Israël], Weizmann Institute of Science, Fondation Universitaire Notre Dame de la Paix (FUNDP), Facultés Universitaires Notre-Dame de la Paix, Département Advanced Research And Techniques For Multidimensional Imaging Systems (ARTEMIS), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), USC Neuromuscular Center, Department of Neurology, University of Southern California (USC), Centre méditérannéen de médecine moléculaire (C3M), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Giannina Gaslini Institute, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Department of Cancer Biology, University of Massachusetts Medical School [Worcester] (UMASS), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Inner Mongolia Agricultural University (IMAU), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Technologie de Belfort-Montbeliard (UTBM), Indian Institute of Science [Bangalore] (IISc Bangalore), Politecnico di Milano [Milan] (POLIMI), Département des Sciences Biologiques [Montréal], Université du Québec à Montréal (UQAM), Laboratory of Molecular Biology, Scientific Institute E. Medea, Université Catholique de Louvain (UCL), Univ Ancona, Politecn Marche, University of Toronto, Munich Cluster for systems neurology [Munich] (SyNergy), Technische Universität München [München] (TUM)-Ludwig-Maximilians-Universität München (LMU), Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), Department of Clinical and Molecular Medicine, Università degli Studi di Roma 'La Sapienza' [Rome]-Réseau International des Instituts Pasteur (RIIP)-Institut Pasteur, Fondation Cenci Bolognetti - Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Réseau International des Instituts Pasteur (RIIP), Physiopathologie du système nerveux central - Institut François Magendie, Université Bordeaux Segalen - Bordeaux 2-IFR8-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Hémato-Cancérologie Expérimentale, CRP-Santé, Dpt of Neuroscience and Brain Technologies [Genova], NeuroEngineering & bio-arTificial Synergic SystemS Laboratory [Genova] (NetS3 Lab), Istituto Italiano di Tecnologia (IIT)-Istituto Italiano di Tecnologia (IIT), Center for Infection and Immunity Amsterdam (CINIMA), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Centre de résonance magnétique biologique et médicale (CRMBM), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS), Régulation de l'expression génétique (REG), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS), Dynamique des interactions membranaires normales et pathologiques (DIMNP), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Department of Microbiology and Immunology, Stanford University School of Medicine [CA, USA], Institut de Myologie, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Dermatology, Brigham and Women's Hospital [Boston], San Raffaele Scientific Institute, Milan, Italy, Laboratory of Molecular Neuroembryology, University of Rome 'Tor Vergeta'-Clinical and Behavioral Neurology - Neuroscienze e riabilitazione, IRCCS Fondazione Santa Lucia [Roma]-Dulbecco Telethon Institute, Department of Pharmacology, Universidade de Santiago de Compostela, Glycobiologie et signalisation cellulaire, Université Paris-Sud - Paris 11 (UP11)-Institut National de la Santé et de la Recherche Médicale (INSERM), Complexo Hospitalario Universitario A Coruña, Mécanismes moléculaires de l'angiogénèse, Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Florida [Gainesville], Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc - U1172 Inserm), Université Lille Nord de France (COMUE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université Lille 2 - Faculté de Médecine, Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Interactions hôte-greffon-tumeur, ingénierie cellulaire et génique - UFC (UMR INSERM 1098) (HOTE GREFFON), Université de Franche-Comté (UFC)-Etablissement français du sang [Bourgogne-France-Comté] (EFS [Bourgogne-France-Comté])-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Infection bactérienne, inflammation, et carcinogenèse digestive, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-IFR50-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Universita degli Studi di Padova, University of British Columbia (UBC), University of Edinburgh, Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia, Faculty of Engineering and Natural Sciences, Sabanci University [Istanbul], Department of Biological Sciences [Stanford], Stanford University [Stanford], Université de Montréal (UdeM), Department of Human Genetics, Department of Psychiatry, University of Michigan System-University of Michigan System-Molecular and Behavioral Neuroscience Institute, Centre for Computational and Systems Biology (COSBI), Department of Computer Science [Tsukuba], Graduate School of Systems and Information Engineering [Tsukuba], University of Tsukuba-University of Tsukuba, Institut de biochimie et génétique cellulaires (IBGC), University of Western Ontario (UWO), Genetics, Dynamique Musculaire et Métabolisme (DMEM), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM), Department of Biochemistry and Biophysics, University of Naples Federico II, Lund University [Lund], Institute of Molecular Biosciences, Karl-Franzens University Graz, (IMB), Karl-Franzens-Universität Graz, Polytechnic University of Marche, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Aix Marseille Université (AMU), Cell Biology, Physiology and Immunology, Research Unit on BioActive Molecules, Departamento de Química Orgánica Biológica, Instituto de Investigaciones Quimicas y Ambientales de Barcelona, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Physiopathologie et thérapie du muscle strié, Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR14-Institut National de la Santé et de la Recherche Médicale (INSERM), The Buck Institute for Age Research, University of Pisa - Università di Pisa, Laboratorio di Genetica Molecolare, Istituto Gaslini, Universidad de Castilla-La Mancha (UCLM), Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, University of Crete [Heraklion] (UOC), Division of Molecular and Cellular Pathology [Birmingham], Department of Medical Research, Taichung Veterans General Hospital, Modélisation et Simulation Numérique en Mécanique et Génie des Procédés (MSNMGP), Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), University of Queensland [Brisbane], Dept of Mathematics, Purdue University, Purdue University [West Lafayette], Virologie et Pathologie Humaine (VirPath), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Zhejiang University, Équipe Micro et nanosystèmes HyperFréquences Fluidiques (LAAS-MH2F), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J), King Abdullah University of Science and Technology (KAUST), Southern University of Science and Technology of China (SUSTech), OASE, National University of Tainan, Taiwan (OASE), National Taiwan University [Taiwan] (NTU), Weifang Bureau of Land Resources [Weifang], Department of cardiology [Guy's and St. Thomas ' hospitals] [London], Guy's and St Thomas' Hospital [London]-Guy's Hospital [London], University of Pennsylvania [Philadelphia], CRLCC Eugène Marquis (CRLCC), Emory University School of Medicine, Emory University [Atlanta, GA], Korea University, Cytokines et Immunologie des Tumeurs Humaines (U753), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Pharmacology [Tartu, Estonie], Institute of Biomedicine and Translational Medicine [Tartu, Estonie], University of Tartu-University of Tartu, Max-Planck-Institut für Biophysikalische Chemie - Max Planck Institute for Biophysical Chemistry [Göttingen], Max-Planck-Gesellschaft, University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), University of Cincinnati (UC), Réponses immunes : régulation et développement, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Experimental Medicine, Oxford University, University of Oxford [Oxford], Division of regenerative Medicine, San Raffaele Scientific Institute, The University of New Mexico [Albuquerque], Université Libre de Bruxelles [Bruxelles] (ULB), Macrophages et Développement de l'Immunité, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health [Baltimore], Johns Hopkins University (JHU)-Johns Hopkins University (JHU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Biomediche, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Department of Experimental Medicine and Oncology, University of Turin, Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), CNV, University of Valparaiso, Institut Gustave Roussy (IGR), Universidad Autonoma de Madrid (UAM), Cell Signalling & Proteomics Group [Londres, Royayme-Uni], Barts Cancer Institute [Londres, Royayme-Uni], Queen Mary University of London (QMUL)-Queen Mary University of London (QMUL), Department of General, Visceral and Vascular Surgery [Jena], Friedrich-Schiller-Universität Jena, Department of Biomedical Engineering, The University of Texas at Austin, University of Texas at Austin, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte - Clermont Auvergne (M2iSH), Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne (UCA)-Centre de Recherche en Nutrition Humaine d'Auvergne (CRNH d'Auvergne), Fondazione Santa Lucia (IRCCS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Jacques Monod (IJM (UMR_7592)), Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Department of Biology, Johns Hopkins University (JHU), Neurogenetics Group, Instituto de Investigación en Recursos Cinegéticos (IREC), Laboratório de Ultraestrutura Celular Hertha Meyer (IBCCF), Universidade Federal do Rio de Janeiro [Rio de Janeiro] (UFRJ), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Molecular and Cellular Biology, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), National University of Ireland [Galway] (NUI Galway), Institut des Maladies Neurodégénératives [Bordeaux] (IMN), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Freiburg Institute for Advanced Studies-LifeNet, Albert-Ludwigs-Universität Freiburg, Groupe de Recherche en Immunopathologies et maladies infectueuses (GRI), Université de La Réunion (UR)-Centre hospitalier Félix-Guyon [Saint-Denis, La Réunion], Brunel University London [Uxbridge], Unité Propre de Recherche 2357, Institution de Biologie Moléculaire des Plantes, Radiothérapie moléculaire (UMR 1030), Department of Chemistry, University of Kentucky, Universidad de Córdoba [Cordoba], Institut Pasteur, Fondation Cenci Bolognetti - Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Università degli Studi di Roma 'La Sapienza' [Rome], Facultad de Ciencias Químicas y Farmacéuticas, Centro de Estudios Moleculares de la Célula, Biochemistry and Molecular Biology, Goethe-University Frankfurt am Main, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Institut Bergonié - Département de médecine, Université Bordeaux Segalen - Bordeaux 2-Centre régional de lutte contre le cancer [CRLCC], Institut National Polytechnique de Lorraine (INPL), Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de signalisation moléculaire et neurodégénerescence, Université Louis Pasteur - Strasbourg I-IFR37-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Européen de Chimie et Biologie (IECB), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Trafic membranaire et Division cellulaire, Landesbetrieb Hessisches Landeslabor, Hematology-Oncology Division, Perelman School of Medicine, University of Pennsylvania [Philadelphia]-University of Pennsylvania [Philadelphia], University of Pavia, Instituto de Investigaciones Biotecnológicas [San Martín] (IIB-INTECH), Universidad Nacional de San Martin (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), University of Helsinki, School of Physics and Astronomy [Exeter], University of Exeter, Department of Biomedicinal Chemistry (CSIC), Institut de Química Avançada de Catalunya, Laboratory of Vascular Pathology (IDI-IRCCS), Istituto Dermopatico dell'Immacolata, Peking University [Beijing], MRC Centre for Developmental Neurobiology, University of Brescia, Immunobiologie fondamentale et clinique, Université de Lyon-Université de Lyon-IFR128-Institut National de la Santé et de la Recherche Médicale (INSERM), CIC régional épidémiologie clinique/essais cliniques - Ile de la Réunion (CIC-EC), University of Rome 'Tor Vergeta', Universidad de Oviedo [Oviedo], Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Dulbecco Telethon Institute/Department of Biology, Istituto Nazionale di Malattie Infettive 'Lazzaro Spallanzani' (INMI), Rockefeller University [New York], The Babraham Institute, Kansas State University, McGill University, Service d'Anatomie et Cytologie Pathologique [Rouen], CHU Rouen, Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Department of Medicine [New York], Icahn School of Medicine at Mount Sinai [New York] (MSSM), ATOS Origin, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences-Tohoku University [Sendai], Goethe-University, Goethe-Universität Frankfurt am Main, Institute of physiological chemistry, Hannover Medical School [Hannover] (MHH), Department of Physiology, Department of Plant and Environmental Sciences, Apoptose, cancer et immunité (U848), Laboratoire de Biologie du Développement (LBD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Departments of Neurology and Psychiatry, Alzheimer's Disease Research Center, Institute of Experimental Immunology - IEI [Zürich, Switzerland], Université de Zurich [Switzerland], Digital Enterprise Research Institute (DERI-NUIG), Spanish National Research Council (CSIC), Cell Death Research and Therapy Unit [Leuven, Belgium] ( Department of Cellular and Molecular Medicine), Centre d'Immunologie de Marseille - Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Signaling in Oncogenesis, Angiogenesis and Permeability - SOAP (CRCINA - Département ONCO - Equipe 15), Centre de recherche de Cancérologie et d'Immunologie / Nantes - Angers (CRCINA), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Department of Medicine [San Francisco], University of California [San Francisco] (UCSF), University of California-University of California, Fondazione Santa Lucia [IRCCS], Clinical and Behavioral Neurology [IRCCS Santa Lucia], Institut de biologie moléculaire des plantes (IBMP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR48, INSB-INSB-Centre National de la Recherche Scientifique (CNRS), Department of Anatomy, Histology, Forensic Medicine and Orthopedic, N.A., Division of Pharmacology and Chemotherapy, Department of Internal Medicine, Pathogénie Microbienne Moléculaire, University of Chile [Santiago], Université de Montpellier (UM), Faculdade de Ciências Farmacêuticas de Ribeirão Preto [São Paulo], Universidade de São Paulo (USP), Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institut de recherche en cancérologie de Montpellier (IRCM - U896 Inserm - UM1), CRLCC Val d'Aurelle - Paul Lamarque-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 1 (UM1), Catalan Institute of Oncology, Department of Cell Biology, National Institute for Basic Biology [Okazaki], Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Universidad de Sevilla-Centro de Investigaciones Científicas Isla de la Cartuja, The Adams Super Center for Brain Studies, Tel Aviv University [Tel Aviv], Institut de Biologie du Développement de Marseille (IBDM), Aix Marseille Université (AMU)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Department of Pharmacology and biochemistry, Virginia Commonwealth University (VCU), Department of Immunology, St Jude Children's Research Hospital, Department of Biology and Biotechnologies 'Charles Darwin', Lettres, Idées, Savoir (LIS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institute of Biological Chemistry and Nutrition, University of Hohenheim, China Seismological Bureau, Massachusetts Institute of Technology (MIT), Rosenstiel Basic Medical Sciences Research Center [Waltham], Brandeis University, Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA), Meakins-Christie Laboratories, Sanford Burnham Medical Research Institute, La Jolla, National Institute of Advanced Industrial Science and Technology (AIST), ORIENT ET MÉDITERRANÉE : Textes, Archéologie, Histoire (OM), Université Panthéon-Sorbonne (UP1)-École pratique des hautes études (EPHE)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), David Geffen School of Medicine [Los Angeles], University of California [Los Angeles] (UCLA), Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Biochemistry and Molecular Biology I, Department of Immunology and Infectious Diseases, Harvard School of Public Health, aDepartment of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Philipps University of Marburg, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Renal Division, University Medical Center Freiburg, Freiburg, Germany, Rural Health Academic Centre, University of Melbourne-Rural Clinical School, Department of Pathology, University of Veterinary and Animal Sciences, Dipartimento di Scienze della Vita [Modena, Italy], Stress Cellulaire, Université de la Méditerranée - Aix-Marseille 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Pathology, Anatomy & Cell Biology [Philadelphia, Pennsylvania, USA], Thomas Jefferson University, Department of Molecular Neuroscience, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Centro de Investigación en Bioquímica Clínica e Inmunología (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina, Neuroinflammation Unit, Biotech Research and Innovation Centre-University of Copenhagen = Københavns Universitet (KU), Mathematics and Computing in Automatic Control and Optimization for the User (MIAOU), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Danish Cancer Society, Institute of Cancer Biology, UCL-Institute of Child Health (ICH), Institute of Child Health-Great Ormond Street Hospital for Children [London] (GOSH), Division of Renal Diseases and Hypertension, University of Colorado [Boulder], Institut de biologie et chimie des protéines [Lyon] (IBCP), Joslin Diabetes Center, Universität Ulm - Ulm University [Ulm, Allemagne], Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China, Université Paris Diderot - Paris 7 (UPD7), Institute of Software, Chinese Academy of Sciences [Beijing] (CAS), Metabolic Engineering Group, Departamento de Microbiologia y Genetica, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, University of Minnesota [Twin Cities], University of Minnesota System, Department of Cellular and Molecular Physiology, Yale University School of Medicine, The Arctic University of Norway, Department of Biological Sciences, The Open University [Milton Keynes] (OU), Summit Analytical, CALRG, Institute of Educational Technology, Institute for Neurologic Disabilities Research, Faculty of Health Sciences-University of Pretoria [South Africa], Department of Paediatric Neurology, Guy's and St Thomas' Hospital [London]-Evelina Children's Hospital, Physiologie des Adaptations Nutritionnelles [UMR_A1280] (PhAN), Institut National de la Recherche Agronomique (INRA)-Université de Nantes (UN), Dana-Farber Cancer Institute and the Department of Cell Biology, Harward Medical School, Translational Health Science and Technology Institute [Faridabad] (THSTI), Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, School of Reliability and Systems Engineering [Beijing], Beihang University, Oxford Centre for Integrative Systems Biology, Center for Membrane and Cell Physiology [Charlottesville, VA, USA] (School of Medicine), University of Virginia [Charlottesville], Apoptose, cancer et immunité (Equipe labellisée Ligue contre le cancer - CRC - Inserm U1138), Institut Gustave Roussy (IGR)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Karlsruher Institut für Technologie (KIT), Faculty of Pharmaceutical Sciences, Hokkaido University, École normale supérieure - Paris (ENS Paris), School of Electrical Engineering [Seoul] (Korea University), Department of Mathematics and Statistics [Guelph], University of Guelph, Department of Molecular Genetics, Department of Genetics [Stanford, CA, États-Unis], Institute of Immunology, University Hospital Schleswig-Holstein, Arizona Respiratory Center, Okazaki Institute for Integrative Bioscience, ToxAlim (ToxAlim), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), Newcastle University [Newcastle], JRC Institute for Transuranium Elements [Karlsruhe] (ITU ), European Commission - Joint Research Centre [Karlsruhe] (JRC), Department of Neuroscience, University of Texas Southwestern Medical Center [Dallas], Centre de génétique et de physiologie moléculaire et cellulaire (CGPhiMC), Laboratory of Functional Neurogenomics [Tuebingen, Germany], University of Tuebingen-Center of Neurology and Hertie-Institute for Clinical Brain Research [Tuebingen, Germany], Indian Institute of Technology Bombay (IIT Bombay), European Organization for Nuclear Research (CERN), Harvard Medical School [Boston] (HMS), Indian School of Mines, Department of Computer Science [UIUC] (UIUC), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, Centre for Cancer Biology, Hanson Institute, Adelaide, University of California [San Diego] (UC San Diego), University of California, Centre d’Infection et d’Immunité de Lille (CIIL) - U1019 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Department of Biochemistry, University of Bristol, Organisation Nucléaire et Oncogenèse, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), FONDAP Center CEMC Estudios Moleculares de la Célula, Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Centre d'infectiologie Necker-Pasteur [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Chungnam National Univesity School of Medicine, Taejon, Korea, Chungnam National Univesity School of Medicine, Micro & Nanobiotechnologies, Institut des Sciences Analytiques (ISA), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Center for Applied Mathematics, Tsinghua University [Beijing], University of Connecticut School of Medicine, University of Connecticut (UCONN), Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes (LBMCE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Microenvironnement et Physiopathologie de la Differenciation, Division of Nephrology and Hypertension, Mayo Clinic, Beatson Institute for Cancer Research, Beatson institute for cancer research, Howard Hughes Medical Institute, Howard Hugues Medical Institute, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Institute of Computing Technology [Beijing] (ICT), Chinese Academy of Sciences [Changchun Branch] (CAS), School of Electronics and Computer Science (ECS), University of Southampton, Third Hospital, Department of Anesthesiology, Cognitive Interaction Technology [Bielefeld] (CITEC), Universität Bielefeld = Bielefeld University, Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Faculty of Pharmacy- University of Coimbra, National Neuroscience Institute, Key Laboratory of Molecular Virology & Immunology (LMVI), Institut Pasteur de Shanghai, Académie des Sciences de Chine - Chinese Academy of Sciences (IPS-CAS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Coll Life Sci, Beijing Normal University, Delft University of Technology (TU Delft), Christian-Albrechts-Universität zu Kiel (CAU), Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine-George Mason University [Fairfax], Sidney Kimmel Cancer Center, Jefferson (Philadelphia University + Thomas Jefferson University), Institut des Sciences Chimiques de Rennes (ISCR), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Department of Chemistry, University of Pittsburgh, University of Pittsburg, Tianjin University of Science and Technology (TUST), Hunan University of Science and Technology [Xiangtan], Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), China Agricultural University (CAU), Acad Disaster Reduct and Emergency Management, Minist Civil Affairs, Minist Educ, Beijing, Peoples R China, affiliation inconnue, Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Laboratoire d'Informatique Gaspard-Monge (ligm), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biochimie Moléculaire et Cellulaire (LBMC), Université de Bourgogne (UB), Center for International Blood and Marrow Transplant Research (CIBMTR), Emory University [Atlanta, GA]-Medical College of Wisconsin, Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Illman Cancer Center, Pennsylvania Commonwealth System of Higher Education (PCSHE)-Pennsylvania Commonwealth System of Higher Education (PCSHE), Ingénierie des Matériaux Polymères (IMP), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), Department of Medical Microbiology and Immunology, University of California [Davis] (UC Davis), School of Health Sciences, University of Minho [Braga], Équipe Calcul Distribué et Asynchronisme (LAAS-CDA), University of California [Riverside] (UCR), Ohio State University [Columbus] (OSU), Laboratory of Systems Biology, Van Andel Institute [Grand Rapids], Division of Genetics and Cell Biology, National Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Oregon Health and Science University [Portland] (OHSU), Dendrite Differenciation Group [DZNE - Bonn], German Research Center for Neurodegenerative Diseases - Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Equipe 12, Génétique moléculaire, signalisation et cancer (GMSC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University Medical Center [Utrecht], Institut d'Investigacions Biomèdiques August Pi I Sunyer [Barcelona, Spain] (Hospital Clinic ), Department of Genetics, Trinity College Dublin, Fisiopatologia de los procesos inflamatorios, Vall d'Hebron Research Institute, Institució Catalana de Recerca i Estudis Avançats (ICREA), Department of Human Genetics, Nagasaki University, Transduction du signal et oncogénèse, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Curie, Center for Experimental and Molecular Medicine, Academic Medical Center - Academisch Medisch Centrum [Amsterdam] (AMC), University of Amsterdam [Amsterdam] (UvA)-University of Amsterdam [Amsterdam] (UvA), Department of medical Biochemistry, University of Amsterdam [Amsterdam] (UvA), IDI-IRCCS Biochemistry Laboratory, Università degli Studi di Roma Tor Vergata [Roma], Program Against Cancer Therapeutic Resistance/Metabolism & Cancer Group [Catalonia, Spain] (ProCURE), Catalan Institute of Oncology-Girona (ICO-Girona), Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (NOVA), Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, CNR, Consiglio Nazionale delle Ricerche (CNR), Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, The Hospital for sick children [Toronto] (SickKids), Universidad de Sevilla, Immunité muqueuse et vaccination, Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR50-Université Nice Sophia Antipolis (... - 2019) (UNS), DIMS, University of Trento [Trento], Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Department of Cellular and Molecular Medicine [Madrid, Spain], Laboratory of Cell Death and Cancer Therapy [Madrid, Spain], Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) -Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK, Centre d'Immunologie et de Maladies Infectieuses (CIMI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Dpt. of Cancer & Cell Biology, Interactions Bactéries-Cellules (UIBC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris]-Institut National de la Recherche Agronomique (INRA), Max planck Institute for Biology of Ageing [Cologne], Euromov (EuroMov), Wellcome Trust Centre for Molecular Parasitology [Glasgow, UK], University of Glasgow- Institute of Infection, Immunity and Inflammation [Glasgow, UK], Immunologie et chimie thérapeutiques (ICT), Cancéropôle du Grand Est-Centre National de la Recherche Scientifique (CNRS), UMR 1599, Centre National de la Recherche Scientifique (CNRS), EA 4100, Histoire culturelle et sociale de l'art (HiCSA), Université Panthéon-Sorbonne (UP1)-Université Panthéon-Sorbonne (UP1), Centre for Astrophysics and Supercomputing (Centre for Astrophysics and Supercomputing), Swinburne University of Technology [Melbourne], Department of Cellular and Physiological Sciences [Vancouver, BC, Canada] (Life Sciences Institute), University of British Columbia (UBC)-Life Sciences Institute [Vancouver, BC, Canada], School of Pharmacy, Department of Experimental Medicine, Dept. Neurosciences, Department of Internal Medicine, Radboud University Medical Center [Nijmegen], Institute of Medical Genetics and Applied Genomics, Radiation Physics, School of Life Science, Department of Basic Biology, The Graduate University for Advanced Studies, CIBER de Enfermedades Neurodegenerativas (CIBERNED), Doshisha University, National Cancer Research Center [Tokyo, Japan], University of Washington [Seattle], Department of Experimental Neurodegeneration [Göttingen, Germany], University Medical Center Göttingen (UMG), Cibles moléculaires et thérapeutiques de la maladie d'Alzheimer (CIMoTHeMA), Université de Poitiers, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), BioCeV-Institute of Microbiology, Médecine Personnalisée, Pharmacogénomique, Optimisation Thérapeutique (MEPPOT - U1147), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Istituto di chimica biologica, Università degli Studi di Verona, Département Image et Traitement Information (ITI), Institut Mines-Télécom [Paris] (IMT)-Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne, Department of Cell Biology and Biophysics, Università degli Studi di Firenze [Firenze], Cell Immunity in Cancer, Inflammation and infection Group [Zaragoza, Spain] (Biomedical Research Center), Nanoscience Institute of Aragon - INA [Zaragoza, Spain]-Fundación Agencia Aragonesa para la Investigación y el Desarrollo - ARAID [Zaragoza, Spain]-University of Zaragoza - Universidad de Zaragoza [Zaragoza], Department of Pediatrics, Università degli studi di Napoli Federico II, Transfert de Genes a Visee Therapeutique Dans les Cellules Souches, Developpement Normal et Pathologique du Système Immunitaire, Signalisation et physiopathologie des cellules épithéliales, Facultad de Medicina, Universidad de Santiago de Chile [Santiago] (USACH), Departamento de Farmacobiología, Cinvestav-Sede Sur, Centre de recherche Croissance et signalisation (UMR_S 845), College of Life Sciences, Central China Normal University, Institute of Molecular Biotechnology, Austrian Academy of Sciences (OeAW), Laboratory of Cardiac Surgical Research, Monash University [Clayton], Universidade do Minho, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Neurodegenerative Diseases Research Group (CIBERNED), Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Department of medicine, Syracuse, NY, USA, State University of New York (SUNY), National University of Singapore (NUS)-Yong Loo Lin School of Medicine-Graduate School for Integrative Sciences and Engineering, McGill University Health Center [Montreal] (MUHC), National Institute for Infectious Diseases, Transporteurs en Imagerie et Radiothérapie en Oncologie (TIRO - UMR E4320), Service Hospitalier Frédéric Joliot (SHFJ), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-UMR E4320 (TIRO-MATOs), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Institut Gustave Roussy (IGR)-Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Biomedical Sciences, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University [Göttingen]-Institute of Microbiology and Genetics, Sterol metabolism and therapeutic innovations in oncology, Institut Claudius Regaud, CRLCC Institut Claudius Regaud-CRLCC Institut Claudius Regaud-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Department of Molecular, Cellular and Developmental Biology, Señalización Celular 4, Institute of integrative biology (Liverpool), University of Liverpool, Department of Human Biology, University of Cape Town, National Institute of Diabetes and Digestive and Kidney Diseases [Bethesda], Department of Molecular Biology, Eberhard Karls Universität Tübingen, Technical University of Munich (TUM), Biophysics and Bioinformatics Laboratory, Department of Cell Biology and Morphology, Université de Lausanne (UNIL), Shenyang Institute of Automation, the Chinese Academy of Sciences (SIA), Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Xi'an Jiaotong University (Xjtu), Dipartimento di Biologia, Mechanics laboratory , UniversityAmar Telidji, 3000 Laghouat, Algéria., Mechanics laboratory , University Amar Telidji, sans affiliation, Service d'hépatologie [Hôpital Beaujon], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), University of Waterloo, Waterloo, ON, Canada, Institute of Cell Biology and Immunology, University of Stuttgart, Chaperones Research Group, Institute of Biosciences and Technology [Houston, TX, États-Unis] (IBT), Texas A&M Health Science Center [Houston, TX, États-Unis] (TAMHSC), Texas A&M University Health Science Center-Texas A&M University Health Science Center, Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Cibles thérapeutiques, formulation et expertise pré-clinique du médicament (CITHEFOR), Université de Lorraine (UL), Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche [Ancona] (UNIVPM), Department of Biochemistry and Molecular Biology [Indianapolis, IN, USA], Indiana University School of Medicine, Indiana University System-Indiana University System, Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, iMed.UL, Faculty of Pharmacy, University of Lisbon, CESAM & Biology Department, Universidade de Aveiro, Celullar and Molecular Medicine, Università degli Studi di Perugia (UNIPG), Institute of Clinical Molecular Biology, Kiel University, Apoptose et Système Immunitaire (ASI), Vieillissement Cellulaire Intégré et Inflammation (VCII), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Sciences [Aalborg], Aalborg University [Denmark] (AAU), Cambridge Institute for Medical Research (CIMR), University of Cambridge [UK] (CAM), Biozentrum, University of Basel (Unibas), Structural and Computational Biology Unit, European Molecular Biology Laboratory [Grenoble] (EMBL), Rutgers New Jersey Medical School (NJMS), Rutgers University System (Rutgers), Université de Perpignan Via Domitia (UPVD), Universidad Pablo de Olavide [Sevilla] (UPO), Department of Neurosciences, Agronomes et Vétérinaires Sans Frontières (AVSF), AVSF, Department of Mathematics [Gakushuin], Gakushuin University, Department of Internal Medicine [Münster, Germany], University of Münster, Neurogenetics laboratory, University Medicine Goettingen, Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Université d'Uruguay, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Institute for Conservation & Improvement of Valentian Agrodiversity (COMAV), Universitat Politecnica de Valencia (UPV), ICBM, University of Chile [Santiago]-Faculty of Medicine, Nutrition, Métabolisme, Aquaculture (NuMéA), Institut National de la Recherche Agronomique (INRA)-Université de Pau et des Pays de l'Adour (UPPA), Department of Cell Biology, Baltimore, Johns Hopkins University School of Medicine, Baylor College of Medicine (BCM), Baylor University, University of Minnesota Medical School, Beijing Candid soft Technology Co. Ltd, Nanjing University of Information Science and Technology, Department of Hepatobiliary and Pancreatic Surgery [Maebashi, Japan], Gunma University Graduate Schoolof Medicine [Maebashi, Japan], Department of Molecular Genetics [Maastricht, The Netherlands], Maastricht University [The Netherlands], Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine (NASU), Institute of Pharmacology of Natural Products and Clinical Pharmacology, Institute of Pharmacology, University of Bern, Imagine - Institut des maladies génétiques (IMAGINE - U1163), Wilmer Eye Institute, Mayo Clinic and Mayo College of Medicine, Rochester, Institute of Biochemistry and Biophysics, Polska Akademia Nauk (PAN)-Sciences, Department of Electrical and Computer Engineering [Waterloo] (ECE), University of Waterloo [Waterloo], Department of Chemistry and Toxicology, Norwegian Veterinary Institute, Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center [Houston], University of Minho, Friedrich Miescher Laboratory (FML), Charité - Universitätsmedizin Berlin / Charite - University Medicine Berlin, Department of Biomedical Sciences and Biotechnologies, Brescia University, Department of Physiological Chemistry [Bochum], Ruhr-Universität Bochum [Bochum], University of Oslo (UiO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Facultés Universitaires Notre Dame de la Paix (FUNDP), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), École pratique des hautes études (EPHE)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226, Université du Québec à Montréal = University of Québec in Montréal (UQAM), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Association française contre les myopathies (AFM-Téléthon)-Sorbonne Université (SU), Université Lille 2 - Faculté de Médecine -Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Lille Nord de France (COMUE)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang [Bourgogne-France-Comté] (EFS [Bourgogne-France-Comté])-Université de Franche-Comté (UFC), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-IFR50-Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), Institut de Chimie de Toulouse (ICT-FR 2599), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse 1 Capitole (UT1)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées, Université libre de Bruxelles (ULB), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Rio de Janeiro (UFRJ), Institut Bergonié [Bordeaux], UNICANCER, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Trafic membranaire et Division cellulaire - Membrane Traffic and Cell Division, Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Sud - Paris 11 (UP11), McGill University = Université McGill [Montréal, Canada], Service d'Anatomie et Cytologie Pathologique [CHU Rouen], Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Signaling in Oncogenesis, Angiogenesis and Permeability (CRCINA-ÉQUIPE 15), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Universidad de Chile = University of Chile [Santiago] (UCHILE), Centro de Investigacion Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISC), Université Montpellier 1 (UM1)-CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS), Université Panthéon-Sorbonne (UP1)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Collège de France (CdF (institution)), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Great Ormond Street Hospital for Children [London] (GOSH)-Institute of Child Health, Hokkaido University [Sapporo, Japan], Université Paris sciences et lettres (PSL), Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université de Lyon-Université de Lyon, Centre d’Infection et d’Immunité de Lille (CIIL) - INSERM U1019 - UMR 9017 (CIIL), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Organisation Nucléaire et Oncogenèse - Nuclear Organization and Oncogenesis, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon], Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), The Beatson Institute for Cancer Research, Beijing Normal University (BNU), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Université de Lyon-Université de Lyon-Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard [Lyon], Vall d’Hebron Research Institute (VHIR), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Universidade Nova de Lisboa = NOVA University of Lisboa (NOVA), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Doshisha University [Kyoto], Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT), Università degli Studi di Firenze = University of Florence [Firenze], University of Zaragoza - Universidad de Zaragoza [Zaragoza]-Nanoscience Institute of Aragon - INA [Zaragoza, Spain]-Fundación Agencia Aragonesa para la Investigación y el Desarrollo - ARAID [Zaragoza, Spain], Central China Normal University [Wuhan, China], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-UMR E4320 (TIRO-MATOs), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Claudius Regaud, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut de biologie structurale [1992-2019] (IBS - UMR 5075 [1992-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Nanjing University of Information Science and Technology (NUIST), Facultad de Medicina [Buenos Aires], Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Clermont Auvergne (UCA)-Institut National de la Recherche Agronomique (INRA), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional de San Martin (UNSAM), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, George Mason University [Fairfax]-Center for Applied Proteomics and Molecular Medicine, Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institute of Infection, Immunity and Inflammation [Glasgow, UK]-University of Glasgow, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-CHU Rouen, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Gustave Roussy (IGR)-Université Paris-Sud - Paris 11 (UP11), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris], Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,Settore BIO/06 ,biology ,Cell Biology ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,biology.organism_classification ,Cell biology ,Interpretation (model theory) ,03 medical and health sciences ,Arama ,030104 developmental biology ,Molecular Biology ,Humanities ,ComputingMilieux_MISCELLANEOUS - Abstract
Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Abadie, N; Anel, A; Ann, DK; Anoopkumar-Dukie, S; Antonioli, M; Aoki, H; Apostolova, N; Aquila, S; Aquilano, K; Araki, K; Arama, E; Aranda, A; Araya, J; Arcaro, A; Arias, E; Arimoto, H; Ariosa, AR; Armstrong, JL; Arnould, T; Arsov, I; Asanuma, K; Askanas, V; Asselin, E; Atarashi, R; Atherton, SS; Atkin, JD; Attardi, LD; Auberger, P; Auburger, G; Aurelian, L; Autelli, R
- Published
- 2016
- Full Text
- View/download PDF
32. Diphenylpyrazole-Derived Compounds Increase Survival Time of Mice after Prion Infection
- Author
-
Armin Giese, Markus Geissen, Thomas Hirschberger, Martin Eiden, Hermann M. Schätzl, Paul Tavan, Fabienne Leidel, Martin H. Groschup, and Hans A. Kretzschmar
- Subjects
PrPSc Proteins ,animal diseases ,Bovine spongiform encephalopathy ,Transgene ,Cell ,Mice, Transgenic ,Scrapie ,Biology ,Incubation period ,Mice ,Phenols ,In vivo ,medicine ,Animals ,Experimental Therapeutics ,Pharmacology (medical) ,Pharmacology ,medicine.disease ,Virology ,In vitro ,nervous system diseases ,High-Throughput Screening Assays ,Mice, Inbred C57BL ,Infectious Diseases ,medicine.anatomical_structure ,Pyrazoles - Abstract
Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative disorders that can be transmitted by natural infection or inoculation. TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeldt-Jakob disease (CJD) in humans. The emergence of a variant form of CJD (vCJD), which has been associated with BSE, produced strong pressure to search for effective treatments with new drugs. Up to now, however, TSEs have proved incurable, although many efforts have been made both in vitro and in vivo to search for potent therapeutic and prophylactic compounds. For this purpose, we analyzed a compound library consisting of 10,000 compounds with a cell-based high-throughput screening assay dealing with scrapie-infected scrapie mouse brain and ScN 2 A cells and identified a new class of inhibitors consisting of 3,5-diphenylpyrazole (DPP) derivatives. The most effective DPP derivative showed half-maximal inhibition of PrP Sc formation at concentrations (IC 50 ) of 0.6 and 1.2 μM, respectively. This compound was subsequently subjected to a number of animal experiments using scrapie-infected wild-type C57BL/6 and transgenic Tga20 mice. The DPP derivative induced a significant increase of incubation time both in therapeutic and prophylactic experiments. The onset of the prion disease was delayed by 37 days after intraperitoneal and 42 days after oral application, respectively. In summary, we demonstrate a high in vitro efficiency of DPP derivatives against prion infections that was substantiated in vivo for one of these compounds. These results indicate that the novel class of DPP compounds should comprise excellent candidates for future therapeutic studies.
- Published
- 2011
- Full Text
- View/download PDF
33. Proteasomal Dysfunction and Endoplasmic Reticulum Stress Enhance Trafficking of Prion Protein Aggregates through the Secretory Pathway and Increase Accumulation of Pathologic Prion Protein
- Author
-
Sabine Gilch, Kerstin Ackermann, Hanna Wolf, Lars Gädtke, Martin H. Groschup, Ina Vorberg, Hermann M. Schätzl, Max Nunziante, and Kim Dietrich
- Subjects
Proteasome Endopeptidase Complex ,Glycosylation ,animal diseases ,genetics [Proteasome Endopeptidase Complex] ,Population ,Biology ,Endoplasmic Reticulum ,Biochemistry ,metabolism [PrPC Proteins] ,Prion Diseases ,Mice ,metabolism [Endoplasmic Reticulum] ,Stress, Physiological ,genetics [Prion Diseases] ,Cell Line, Tumor ,medicine ,Animals ,PrPC Proteins ,metabolism [Proteasome Endopeptidase Complex] ,education ,Molecular Biology ,Secretory pathway ,education.field_of_study ,Endoplasmic reticulum ,fungi ,Neurodegeneration ,food and beverages ,Molecular Bases of Disease ,Cell Biology ,medicine.disease ,nervous system diseases ,Transport protein ,Cell biology ,Protein Transport ,Cytosol ,genetics [PrPC Proteins] ,Proteasome ,ddc:540 ,genetics [Protein Transport] ,Unfolded Protein Response ,Unfolded protein response ,genetics [Endoplasmic Reticulum] ,metabolism [Prion Diseases] - Abstract
A conformational change of the cellular prion protein (PrP(c)) underlies formation of PrP(Sc), which is closely associated with pathogenesis and transmission of prion diseases. The precise conformational prerequisites and the cellular environment necessary for this post-translational process remain to be completely elucidated. At steady state, glycosylated PrP(c) is found primarily at the cell surface, whereas a minor fraction of the population is disposed of by the ER-associated degradation-proteasome pathway. However, chronic ER stress conditions and proteasomal dysfunctions lead to accumulation of aggregation-prone PrP molecules in the cytosol and to neurodegeneration. In this study, we challenged different cell lines by inducing ER stress or inhibiting proteasomal activity and analyzed the subsequent repercussion on PrP metabolism, focusing on PrP in the secretory pathway. Both events led to enhanced detection of PrP aggregates and a significant increase of PrP(Sc) in persistently prion-infected cells, which could be reversed by overexpression of proteins of the cellular quality control. Remarkably, upon proteasomal impairment, an increased fraction of misfolded, fully glycosylated PrP molecules traveled through the secretory pathway and reached the plasma membrane. These findings suggest a novel pathway that possibly provides additional substrate and template necessary for prion formation when protein clearance by the proteasome is impaired.
- Published
- 2011
- Full Text
- View/download PDF
34. Conditional Modulation of Membrane Protein Expression in Cultured Cells Mediated by Prion Protein Recognition of Short Phosphorothioate Oligodeoxynucleotides
- Author
-
Anat Tiran, Marcela Karpuj, Max Nunziante, Angelika S. Rambold, Jörg Tatzelt, Sagit Gelibter-Niv, and Hermann M. Schätzl
- Subjects
Glycosylation ,PrPSc Proteins ,Down-Regulation ,Phosphorothioate Oligonucleotides ,CHO Cells ,Biology ,Transfection ,Biochemistry ,Prion Diseases ,Green fluorescent protein ,Cell membrane ,Mice ,Neuroblastoma ,chemistry.chemical_compound ,Cricetulus ,Membrane Biology ,Cell Line, Tumor ,Cricetinae ,medicine ,Animals ,PrPC Proteins ,RNA, Small Interfering ,Molecular Biology ,Tunicamycin ,Chinese hamster ovary cell ,Cell Membrane ,Cell Biology ,Molecular biology ,Protein Structure, Tertiary ,medicine.anatomical_structure ,chemistry ,Membrane protein ,Cytoplasm - Abstract
We demonstrate that the levels of native as well as transfected prion protein (PrP) are lowered in various cell lines exposed to phosphorothioate oligodeoxynucleotides (PS-DNA) and can be rapidly reverted to their normal amounts by removal of PS-DNA. This transient modulation was independent of the glycosylation state of PrP, and in addition, all three PrP glycoforms were susceptible to PS-DNA treatment. Deletion of the N-terminal domain (amino acids 23-99), but not of the other domains of PrP, abrogated its PS-DNA-mediated down-regulation. PrP versions localized in the mitochondria, cytoplasm, or nucleus were not modulated by PS-DNA, indicating that PrP surface exposure is required for executing this effect. Proteins that in their native forms were not responsive to PS-DNA, such as thymocyte antigen 1 (Thy1), Doppel protein (Dpl), green fluorescent protein (GFP), and cyan fluorescent protein (CFP), became susceptible to PS-DNA-mediated down-regulation following introduction of the N terminus of PrP into their sequence. These observations demonstrate the essential role of the N-terminal domain for promoting oligonucleotide-mediated reduction of the PrP level and suggest that transient treatment of cultured cells with PS-DNA may provide a general method for targeted modulation of the levels of desired surface proteins in a conditional and reversible manner.
- Published
- 2011
- Full Text
- View/download PDF
35. Elevated Epstein-Barr virus loads and lower antibody titers in competitive athletes
- Author
-
Hubert G. Hörterer, Volker Erfle, Christine Reichhuber, Catrin Tora, Ulrike Protzer, Martin Halle, Korinna Nadas, Bernd Wolfarth, Hermann M. Schätzl, and Dieter Hoffmann
- Subjects
Adult ,Male ,Epstein-Barr Virus Infections ,Herpesvirus 4, Human ,Adolescent ,Immunoblotting ,Enzyme-Linked Immunosorbent Assay ,medicine.disease_cause ,Polymerase Chain Reaction ,Antibodies ,Herpesviridae ,Virus ,Young Adult ,Virology ,Leukocytes ,medicine ,Humans ,Gammaherpesvirinae ,biology ,Athletes ,Antibody titer ,Viral Load ,biology.organism_classification ,Titer ,Infectious Diseases ,Case-Control Studies ,Carrier State ,DNA, Viral ,Immunology ,biology.protein ,Female ,Antibody ,Viral load - Abstract
Epstein-Barr virus (EBV) is a persisting herpesvirus which is controlled by the adaptive immune response after primary infection and maintained in a latent state. However, reactivation or persistent replication is observed in situations where the immune response is compromised. Since intensive physical training has been reported to diminish immune function, increased EBV load may be a cause of reduced performance and decreased ability to sustain high training loads in competitive athletes. Samples drawn from 209 athletes during their regular follow-up appointments were tested. One hundred sixty-five individuals of similar age not active in competitive sports served as case-controls. EBV load was quantified in peripheral blood leucocytes (PBLs) by real-time PCR, and EBV antibodies were detected in plasma by ELISA and immunoblot analysis. EBV DNA was detectable in 25 of 209 athletes and in 26 of 165 controls. Of note, the EBV load per 10(5) PBLs was 6.44 +/- 1.75 in the case and 1.67 +/- 0.44 copies in the controls, yielding a high significant difference (P < 0.0001). However, EBV-specific IgG titers were significantly lower in athletes (150.4 +/- 10.73 U ml(-1) vs. 241.6 +/- 18.59 U ml(-1)). As monitored by immunoblotting, primary infections were detected with low prevalence, three in the case group and one in the control group. These findings demonstrate that EBV is present at higher levels in athletes, but the antibody response is lower in athletes than in the controls. J. Med. Virol. 82:446-451, 2010. (c) 2010 Wiley-Liss, Inc.
- Published
- 2010
- Full Text
- View/download PDF
36. Prion-induced Activation of Cholesterogenic Gene Expression by Srebp2 in Neuronal Cells
- Author
-
Johannes Beckers, Axel Facius, Marion Horsch, Christian Bach, Ina Vorberg, Konrad Sandhoff, Hermann M. Schätzl, Susanne Brodesser, Christine Leib-Mösch, Romina Rost, Alex D. Greenwood, Glaucia N. M. Hajj, Sandra Schädler, and Sabine Gilch
- Subjects
Gene isoform ,Prions ,animal diseases ,Gene Expression ,Lipids and Lipoproteins: Metabolism, Regulation, and Signaling ,Biology ,Biochemistry ,Prion Diseases ,Mice ,chemistry.chemical_compound ,Downregulation and upregulation ,Cell Line, Tumor ,Gene expression ,Animals ,Molecular Biology ,Gene ,Cells, Cultured ,Neurons ,Cholesterol ,Microarray analysis techniques ,Cell Biology ,Molecular biology ,Sterol ,Up-Regulation ,nervous system diseases ,Mice, Inbred C57BL ,chemistry ,Sterol regulatory element-binding protein 2 ,Sterol Regulatory Element Binding Protein 2 - Abstract
Prion diseases are neurodegenerative diseases associated with the accumulation of a pathogenic isoform of the host-encoded prion protein. The cellular responses to prion infection are not well defined. By performing microarray analysis on cultured neuronal cells infected with prion strain 22L, in the group of up-regulated genes we observed predominantly genes of the cholesterol pathway. Increased transcript levels of at least nine enzymes involved in cholesterol synthesis, including the gene for the rate-limiting hydroxymethylglutaryl-CoA reductase, were detected. Up-regulation of cholesterogenic genes was attributable to a prion-dependent increase in the amount and activity of the sterol regulatory element-binding protein Srebp2, resulting in elevated levels of total and free cellular cholesterol. The up-regulation of cholesterol biosynthesis appeared to be a characteristic response of neurons to prion challenge, as cholesterogenic transcripts were also elevated in persistently infected GT-1 cells and prion-exposed primary hippocampal neurons but not in microglial cells and primary astrocytes. These results convincingly demonstrate that prion propagation not only depends on the availability of cholesterol but that neuronal cells themselves respond to prions with specific up-regulation of cholesterol biosynthesis.
- Published
- 2009
- Full Text
- View/download PDF
37. Inhibition of cholesterol recycling impairs cellular PrPSc propagation
- Author
-
Christian Bach, Ina Vorberg, Sabine Gilch, Gloria Lutzny, and Hermann M. Schätzl
- Subjects
Gene isoform ,PrPSc Proteins ,Endosome ,animal diseases ,Green Fluorescent Proteins ,Immunoblotting ,Endosomes ,Biology ,Transfection ,Prion Diseases ,Mice ,Cellular and Molecular Neuroscience ,chemistry.chemical_compound ,Membrane Microdomains ,Niemann-Pick C1 Protein ,Cell Line, Tumor ,Gene expression ,Animals ,Recycling ,Molecular Biology ,Lipid raft ,Pharmacology ,PrP ,Microscopy, Confocal ,NPC-1 ,Cholesterol ,Anticholesteremic Agents ,Vesicle ,Cell Membrane ,Intracellular Signaling Peptides and Proteins ,Brain ,Proteins ,Cell Biology ,nervous system diseases ,Cell biology ,Protein Transport ,nervous system ,chemistry ,rab GTP-Binding Proteins ,Prion ,Molecular Medicine ,Androstenes ,RNA Interference ,Rab ,Rab 9 ,Homeostasis ,trans-Golgi Network ,Research Article - Abstract
The infectious agent in prion diseases consists of an aberrantly folded isoform of the cellular prion protein (PrPc), termed PrPSc, which accumulates in brains of affected individuals. Studies on prion-infected cultured cells indicate that cellular cholesterol homeostasis influences PrPSc propagation. Here, we demonstrate that the cellular PrPSc content decreases upon accumulation of cholesterol in late endosomes, as induced by NPC-1 knock-down or treatment with U18666A. PrPc trafficking, lipid raft association, and membrane turnover are not significantly altered by such treatments. Cellular PrPSc formation is not impaired, suggesting that PrPSc degradation is increased by intracellular cholesterol accumulation. Interestingly, PrPSc propagation in U18666A-treated cells was partially restored by overexpression of rab 9, which causes redistribution of cholesterol and possibly of PrPSc to the trans-Golgi network. Surprisingly, rab 9 overexpression itself reduced cellular PrPSc content, indicating that PrPSc production is highly sensitive to alterations in dynamics of vesicle trafficking. Electronic supplementary material The online version of this article (doi:10.1007/s00018-009-0158-4) contains supplementary material, which is available to authorized users.
- Published
- 2009
- Full Text
- View/download PDF
38. Prion-like propagation of cytosolic protein aggregates
- Author
-
Ina Vorberg, Carmen Krammer, and Hermann M. Schätzl
- Subjects
Amyloid ,Cell division ,Prions ,Cell Culture Techniques ,food and beverages ,Cell Biology ,Mini-Review ,Biology ,Protein aggregation ,Biochemistry ,Cell biology ,Cellular and Molecular Neuroscience ,Cytosol ,Tissue culture ,Infectious Diseases ,Cell culture ,Extracellular ,Animals ,Humans ,Intracellular - Abstract
Amyloid formation is a hallmark of several systemic and neurodegenerative diseases. Extracellular amyloid deposits or intracellular inclusions arise from the conformational transition of normally soluble proteins into highly ordered fibrillar aggregates. Amyloid fibrils are formed by nucleated polymerization, a process also shared by prions, proteinaceous infectious agents identified in mammals and fungi. Unlike so called non-infectious amyloids, the aggregation phenotype of prion proteins can be efficiently transmitted between cells and organisms. Recent discoveries in vivo now implicate that even disease-associated intracellular protein aggregates consisting of alpha-synuclein or Tau have the capacity to seed aggregation of homotypic native proteins and might propagate their amyloid states in a prion-like manner. Studies in tissue culture demonstrate that aggregation of diverse intracellular amyloidogenic proteins can be induced by exogenous fibrillar seeds. Still, a prerequisite for prion-like propagation is the fragmentation of proteinaceous aggregates into smaller seeds that can be transmitted to daughter cells. So far efficient propagation of the aggregation phenotype in the absence of exogenous seeds was only observed for a yeast prion domain expressed in tissue culture. Intrinsic properties of amyloidogenic protein aggregates and a suitable host environment likely determine if a protein polymer can propagate in a prion-like manner in the mammalian cytosol.
- Published
- 2009
- Full Text
- View/download PDF
39. Aptamers against prion proteins and prions
- Author
-
Hermann M. Schätzl and Sabine Gilch
- Subjects
Models, Molecular ,PrPSc Proteins ,Prions ,Protein Conformation ,animal diseases ,Aptamer ,Drug design ,Plasma protein binding ,Biology ,Prion Diseases ,Cellular and Molecular Neuroscience ,Protein structure ,Animals ,Humans ,PrPC Proteins ,Binding site ,Molecular Biology ,Pharmacology ,Peptide Metabolism ,Binding Sites ,RNA ,Cell Biology ,Molecular biology ,nervous system diseases ,Biochemistry ,Nucleic acid ,Molecular Medicine ,Aptamers, Peptide ,Protein Binding - Abstract
Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrP(c)) into the aberrantly folded pathologic isoform PrP(Sc). RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrP(Sc) as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.
- Published
- 2009
- Full Text
- View/download PDF
40. Autophagy induction by trehalose counter-acts cellular prion-infection
- Author
-
Andreas Heiseke, Sabine Gilch, Alexa Ertmer, Michael Baier, Yasmine Aguib, Hermann M. Schätzl, and Constanze Riemer
- Subjects
Time Factors ,Huntingtin ,Prions ,animal diseases ,ATG5 ,Biology ,Piperazines ,Cell Line ,Prion Diseases ,Mice ,chemistry.chemical_compound ,Autophagy ,medicine ,Animals ,Humans ,RNA, Small Interfering ,Molecular Biology ,PI3K/AKT/mTOR pathway ,Neurons ,Alpha-synuclein ,Dose-Response Relationship, Drug ,Neurodegeneration ,Trehalose ,Neurodegenerative Diseases ,Cell Biology ,medicine.disease ,nervous system diseases ,Cell biology ,Pyrimidines ,Imatinib mesylate ,chemistry ,Biochemistry ,Benzamides ,Imatinib Mesylate - Abstract
Prion diseases are fatal neurodegenerative and infectious disorders for which no therapeutic or prophylactic regimens exist. In search of cellular mechanisms that play a role in prion diseases and have the potential to interfere with accumulation of intracellular pathological prion protein (PrP(Sc)), we investigated the autophagic pathway and one of its recently published inducers, trehalose. Trehalose, an alpha-linked disaccharide, has been shown to accelerate clearance of mutant huntingtin and alpha-synuclein by activating autophagy, mainly in an mTOR-independent manner. Here, we demonstrate that trehalose can significantly reduce PrP(Sc) in a dose- and time-dependent manner while at the same time it induces autophagy in persistently prion-infected neuronal cells. Inhibition of autophagy, either pharmacologically by known autophagy inhibitors like 3-methyladenine, or genetically by siRNA targeting Atg5, counteracted the anti-prion effect of trehalose. Hence, we provide direct experimental evidence that induction of autophagy mediates enhanced cellular degradation of prions. Similar results were obtained with rapamycin, a known inducer of autophagy, and imatinib, which has been shown to activate autophagosome formation. While induction of autophagy resulted in reduction of PrP(Sc), inhibition of autophagy increased the amounts of cellular PrP(Sc), suggesting that autophagy is involved in the physiological degradation process of cellular PrP(Sc). Preliminary in vivo studies with trehalose in intraperitoneally prion-infected mice did not result in prolongation of incubation times, but demonstrated delayed appearance of PrP(Sc) in the spleen. Overall, our study provides the first experimental evidence for the impact of autophagy in yet another type of neurodegenerative disease, namely prion disease.
- Published
- 2009
- Full Text
- View/download PDF
41. Therapy in Prion Diseases: From Molecular and Cellular Biology to Therapeutic Targets
- Author
-
Carmen Krammer, Ina Vorberg, Hermann M. Schätzl, and Sabine Gilch
- Subjects
Microbiology (medical) ,Pharmacology ,Prions ,animal diseases ,General Medicine ,Biology ,Prion Diseases ,nervous system diseases ,Spongiform degeneration ,Immunology ,Animals ,Humans ,Molecular Medicine ,PrPC Proteins ,Prion Proteins ,Prion protein ,Neuroscience ,Infectious agent - Abstract
Prion diseases are infectious and fatal neurodegenerative disorders of man and animals which are characterized by spongiform degeneration in the central nervous system. In human diseases, the manifestation can be sporadic, familial or acquired by infection. Prion disorders are caused by the accumulation of an aberrantly folded isoform of the cellular prion protein (PrP(c)), commonly named PrP(Sc). Although prion diseases are usually rare, they have the potential to be transferred within and also between species by infection processes, giving then raise even to epidemic scenarios. As pathology is obviously restricted to the central nervous system pre-mortem diagnosis is usually hard to achieve. Promising approaches towards the development of therapeutic and even prophylactic anti-prion regimens were recently made. However, only a profound knowledge of the infectious agent and its replication strategy enables the design of effective anti-prion strategies. Cell culture models were highly instrumental in uncovering fundamental aspects of prion propagation. In this chapter, the cellular and molecular biology of prion proteins in general is discussed and prophylactic and therapeutic concepts derived thereof are introduced. In particular, emphasis is put on strategies targeting PrP(c) which is absolutely needed as substrate for prion conversion, and on intrinsic cellular clearance mechanisms for prions.
- Published
- 2009
- Full Text
- View/download PDF
42. Inhibition of Prion Amplification by Expression of Dominant Inhibitory Mutants - A Systematic Insertion Mutagenesis Study
- Author
-
Martin H. Groschup, Eberhard Pfaff, Markus Geissen, Juliane Proft, Harriet Mella, Martin Eiden, Armin Saalmüller, and Hermann M. Schätzl
- Subjects
Models, Molecular ,Microbiology (medical) ,Glycosylation ,PrPSc Proteins ,Molecular Sequence Data ,Mutant ,Mutagenesis (molecular biology technique) ,Scrapie ,Biology ,Inhibitory postsynaptic potential ,Cell Line ,Mice ,Animals ,Protein Isoforms ,Protein Interaction Domains and Motifs ,Amino Acid Sequence ,Prion protein ,Pharmacology ,Genetics ,Computer based ,General Medicine ,Protein Structure, Tertiary ,Cell biology ,Mutagenesis, Insertional ,Protein Transport ,Gene Expression Regulation ,Molecular Medicine ,Retroviral transduction ,Function (biology) - Abstract
Until now it is still not clear which structural elements of the prion protein (PrP) are involved in its conversion process. Characterisation of these essential regions would help to understand the conversion process itself and might help to develop specific therapeutic approaches to inhibit PrP(res) formation by dominant inhibitory mutations. To address this important question 33 evenly spaced insertion mutants were generated spanning the entire sequence of the murine 3F4-tagged PrP. The mutants were expressed by retroviral transduction in three different scrapie infected cell lines (ScN2a; SMB[RC040]; SMB[22F]). The convertibility was affected not only by introducing the insertion in the putatively refolded region (aa100-170), but also in the C-terminus of PrP (up to aa214). Moreover, dominant inhibitory effects on conversion were observed for PrP-mutants at four distinguished regions (aa100-112; aa130-154; aa166-172, aa196-200). Computer based structural analysis revealed that these segments were organized in two structurally clearly separated regions supporting the idea that they could function as protein-protein interaction sites which are necessary during seed formation.
- Published
- 2009
- Full Text
- View/download PDF
43. The yeast Sup35NM domain propagates as a prion in mammalian cells
- Author
-
Michael H. Suhre, Thomas Scheibel, Carmen Krammer, Ina Vorberg, Andreas Hofmann, Dmitry Kryndushkin, Reed B. Wickner, Alexander Pfeifer, Hermann M. Schätzl, and Elisabeth Kremmer
- Subjects
Saccharomyces cerevisiae Proteins ,Multidisciplinary ,Cell division ,Prions ,animal diseases ,Molecular Probe Techniques ,Biological Sciences ,Protein aggregation ,Biology ,medicine.disease ,Fibril ,Molecular biology ,Yeast ,Prion Diseases ,Fungal prion ,Murine neuroblastoma ,Cell biology ,Mice ,Neuroblastoma ,Cytosol ,Tumor Cells, Cultured ,medicine ,Animals ,Peptide Termination Factors - Abstract
Prions are infectious, self-propagating amyloid-like protein aggregates of mammals and fungi. We have studied aggregation propensities of a yeast prion domain in cell culture to gain insights into general mechanisms of prion replication in mammalian cells. Here, we report the artificial transmission of a yeast prion across a phylogenetic kingdom. HA epitope-tagged yeast Sup35p prion domain NM was stably expressed in murine neuroblastoma cells. Although cytosolically expressed NM-HA remained soluble, addition of fibrils of bacterially produced Sup35NM to the medium efficiently induced appearance of phenotypically and biochemically distinct NM-HA aggregates that were inherited by daughter cells. Importantly, NM-HA aggregates also were infectious to recipient mammalian cells expressing soluble NM-HA and, to a lesser extent, to yeast. The fact that the yeast Sup35NM domain can propagate as a prion in neuroblastoma cells strongly argues that cellular mechanisms support prion-like inheritance in the mammalian cytosol.
- Published
- 2009
- Full Text
- View/download PDF
44. The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein
- Author
-
Muriel Malaisé, Alexander Bürkle, and Hermann M. Schätzl
- Subjects
Antioxidant ,Prions ,animal diseases ,media_common.quotation_subject ,medicine.medical_treatment ,Biology ,medicine.disease_cause ,Biochemistry ,Antioxidants ,Conserved sequence ,Mice ,Neuroblastoma ,chemistry.chemical_compound ,ddc:570 ,Physiology (medical) ,medicine ,Animals ,Humans ,Internalization ,Repetitive Sequences, Nucleic Acid ,Sequence Deletion ,media_common ,Membrane Potential, Mitochondrial ,Superoxide ,Hydrogen Peroxide ,Oxidants ,Signaling ,Transmembrane protein ,Protein Structure, Tertiary ,nervous system diseases ,Oxidative Stress ,Prion protein ,chemistry ,ROS detection ,Mitochondrial membrane potential ,Signal transduction ,Reactive Oxygen Species ,Copper ,Intracellular ,Oxidative stress ,HeLa Cells - Abstract
The cellular prion protein (PrP(c)) plays a crucial role in the pathogenesis of prion diseases, but its physiological function is far from understood. Several candidate functions have been proposed including binding and internalization of metal ions, a superoxide dismutase-like activity, regulation of cellular antioxidant activities, and signal transduction. The transmembrane (TM1) region of PrP(c) (residues 110-135) is particularly interesting because of its very high evolutionary conservation. We investigated a possible role of TM1 in the antioxidant defense, by assessing the impact of overexpressing wt-PrP or deletion mutants in N(2)A mouse neuroblastoma cells on intracellular reactive oxygen species (ROS) levels. Under conditions of oxidative stress, intracellular ROS levels were significantly lowered in cells overexpressing either wild-type PrP(c) (wt-PrP) or a deletion mutant affecting TM1 (Delta8TM1-PrP), but, as expected, not in cultures overexpressing a deletion mutant lacking the octapeptide region (Deltaocta-PrP). Overexpression of wt-PrP, Delta8TM1-PrP, or Deltaocta-PrP did not affect basal ROS levels. Interestingly, the mitochondrial membrane potential was significantly lowered in Deltaocta-PrP-transfected cultures in the absence of oxidative stress. We conclude that the protective effect of PrP(c) against oxidative stress involves the octarepeat region but not the TM1 domain nor the high-affinity copper binding site described for human residues His96/His111.
- Published
- 2008
- Full Text
- View/download PDF
45. The Novel Sorting Nexin SNX33 Interferes with Cellular PrPScFormation by Modulation of PrPcShedding
- Author
-
Stefan F. Lichtenthaler, Andreas Heiseke, Martin H. Groschup, Susanne Schöbel, Max Nunziante, Ina Vorberg, Hans A. Kretzschmar, and Hermann M. Schätzl
- Subjects
Gene isoform ,Amyloid ,Prions ,animal diseases ,Sorting Nexins ,Endocytic cycle ,Vesicular Transport Proteins ,Biology ,Endocytosis ,Models, Biological ,Biochemistry ,Cell Line ,Prion Diseases ,Mice ,Structural Biology ,Cell Line, Tumor ,Genetics ,Amyloid precursor protein ,Animals ,Humans ,Biotinylation ,Molecular Biology ,Brain ,Cell Biology ,Receptor-mediated endocytosis ,Molecular biology ,nervous system diseases ,Cell biology ,Protein Transport ,Sorting nexin ,Cell culture ,biology.protein ,Carrier Proteins ,Gene Deletion - Abstract
The cellular prion protein (PrP(c)) is a glycosyl-phosphatidylinositol (GPI)-anchored protein trafficking in the secretory and endocytic pathway and localized mainly at the plasma membrane. Conversion of PrP(c) into its pathogenic isoform PrP(Sc) is associated with pathogenesis and transmission of prion diseases. Intramolecular cleavage in the middle, the extreme C-terminal part or within the GPI anchor and shedding of PrP(c) modulate this conversion process by reducing the substrate for prion formation. These phenomena provide similarities with the processing of amyloid precursor protein in Alzheimer's disease. Sorting nexins are a family of proteins with important functions in protein trafficking. In this study, we investigated the role of the newly described sorting nexin 33 (SNX33) in trafficking and processing of PrP(c). We found that overexpression of SNX33 in neuronal and non-neuronal cell lines resulted in increased shedding of full-length PrP(c) from the plasma membrane and modulated the rate of PrP(c) endocytosis. This was paralleled by reduction of PrP(Sc) formation in persistently and newly infected cells. Using deletion mutants, we demonstrate that production of PrP fragment N1 is not influenced by SNX33. Our data provide new insights into the cellular mechanisms of PrP(c) shedding and show how this can affect cellular PrP(Sc) conversion.
- Published
- 2008
- Full Text
- View/download PDF
46. Targeting prion proteins in neurodegenerative disease
- Author
-
Hermann M. Schätzl, Carmen Krammer, and Sabine Gilch
- Subjects
Drug ,PrPSc Proteins ,Prions ,Protein Conformation ,animal diseases ,media_common.quotation_subject ,Clinical Biochemistry ,Drug Evaluation, Preclinical ,Disease ,Biology ,Models, Biological ,Creutzfeldt-Jakob Syndrome ,Prion Diseases ,Mice ,Drug Discovery ,medicine ,Animals ,Humans ,Protein Isoforms ,PrPC Proteins ,Prion protein ,media_common ,Pharmacology ,Neurodegeneration ,Neurotoxicity ,Translational medicine ,Neurodegenerative Diseases ,medicine.disease ,nervous system diseases ,Drug Design ,Immunology ,Prion Proteins - Abstract
Background: Spongiform neurodegeneration is the pathological hallmark of individuals suffering from prion disease. These disorders, whose manifestation is sporadic, familial or acquired by infection, are caused by accumulation of the aberrantly folded isoform of the cellular prion protein (PrPc), termed PrPSc. Although usually rare, prion disorders are inevitably fatal and transferrable by infection. Objective: Pathology is restricted to the central nervous system and premortem diagnosis is usually not possible. Yet, promising approaches towards developing therapeutic regimens have been made recently. Methods: The biology of prion proteins and current models of neurotoxicity are discussed and prophylactic and therapeutic concepts are introduced. Results/conclusions: Although various promising drug candidates with antiprion activity have been identified, this proof-of-concept cannot be transferred into translational medicine yet.
- Published
- 2008
- Full Text
- View/download PDF
47. Abschätzung der effektiven Dosis für Routineprotokolle beim konventionellen CT, Elektronenstrahl-CT und bei der Koronarangiographie
- Author
-
U. J. Schöpf, H. Feist, U. Lechel, Christoph R. Becker, M. F. Reiser, G. Michalski, Roland Brüning, M Hengge, A. Bäuml, and M. Schätzl
- Subjects
endocrine system ,medicine.medical_specialty ,medicine.diagnostic_test ,business.industry ,viruses ,Effective dose (radiation) ,Imaging phantom ,Coronary arteries ,medicine.anatomical_structure ,Angiography ,Dosimetry ,Medicine ,Abdomen ,Radiology, Nuclear Medicine and imaging ,Tomography ,Radiology ,Spiral ct ,business ,Nuclear medicine ,neoplasms - Abstract
Purpose To compare the effective dose applied by sequential CT (SEQ), spiral CT (SCT), electron beam CT (EBT) and coronary angiography for investigations of the chest, abdomen and the heart. Methods The Alderson Phantom was used to compare the effective dose for all modalities. In addition, the effective dose for conventional CT (SEQ and SCT) was estimated with a mathematical phantom. Results For CT investigation of the chest and abdomen the dose was highest for the EBT (11 mSv and 25 mSv, respectively) and slightly lower for the SEQ (7.8 mSv and 21.5 mSv, respectively), whereas spiral CT required the least dose (5.3 mSv and 8.8 mSv, respectively). For coronary calcium screening (0.8 mSv) and EBT coronary angiography (1.7 mSv) the dose was lower than for coronary catheter angiography (3.3 mSv). For conventional CT the difference between the effective dose derived by the mathematical phantom and by the Alderson phantom was 2% to 20%. Conclusions For investigations of the chest and abdomen the effective dose applied by SCT is significantly lower than that with EBT and SEQ. For investigation of the coronary arteries the effective dose applied by EBT is lower than that for coronary catheter angiography.
- Published
- 2008
- Full Text
- View/download PDF
48. Cell Type-Specific Cleavage of Nucleocapsid Protein by Effector Caspases during SARS Coronavirus Infection
- Author
-
Gert Frösner, Claudia Diemer, Martha Schneider, Judith Seebach, Janine Quaas, Hermann M. Schätzl, and Sabine Gilch
- Subjects
Cytoplasm ,viruses ,CoV, coronavirus ,coronavirus ,NH4Cl, ammonium chloride ,caspase-6 ,medicine.disease_cause ,Structural Biology ,Chlorocebus aethiops ,skin and connective tissue diseases ,CI, caspase inhibitor ,Caspase ,Coronavirus ,Cytopathic effect ,intrinsic apoptotic pathway ,Caspase 6 ,biology ,Caspase 3 ,Nucleocapsid Proteins ,N, nucleocapsid protein ,Severe acute respiratory syndrome-related coronavirus ,wt, wild type ,Coronavirus Infections ,nucleocapsid protein ,TGEV, transmissible gastroenteritis coronavirus ,PBS, phosphate-buffered saline ,Article ,Cell Line ,ORF, open reading frame ,medicine ,Animals ,Coronavirus Nucleocapsid Proteins ,Humans ,SARS, severe acute respiratory syndrome ,Molecular Biology ,SARS ,Cell Nucleus ,A549 cell ,p.i., post-infection ,fungi ,Subcellular localization ,Molecular biology ,respiratory tract diseases ,LC, lactacystin ,body regions ,NLS, nuclear localization signal ,Apoptosis ,Cell culture ,biology.protein ,Vero cell ,MHV, murine hepatitis virus - Abstract
The epidemic outbreak of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus (CoV), designated SARS-CoV. The RNA genome of SARS-CoV is complexed by the nucleocapsid protein (N) to form a helical nucleocapsid. Besides this primary function, N seems to be involved in apoptotic scenarios. We show that upon infection of Vero E6 cells with SARS-CoV, which elicits a pronounced cytopathic effect and a high viral titer, N is cleaved by caspases. In contrast, in SARS-CoV-infected Caco-2 cells, which show a moderate cytopathic effect and a low viral titer, this processing of N was not observed. To further verify these observations, we transiently expressed N in different cell lines. Caco-2 and N2a cells served as models for persistent SARS-CoV infection, whereas Vero E6 and A549 cells did as prototype cell lines lytically infected by SARS-CoV. The experiments revealed that N induces the intrinsic apoptotic pathway, resulting in processing of N at residues 400 and 403 by caspase-6 and/or caspase-3. Of note, caspase activation is highly cell type specific in SARS-CoV-infected as well as transiently transfected cells. In Caco-2 and N2a cells, almost no N-processing was detectable. In Vero E6 and A549 cells, a high proportion of N was cleaved by caspases. Moreover, we examined the subcellular localization of SARS-CoV N in these cell lines. In transfected Vero E6 and A549 cells, SARS-CoV N was localized both in the cytoplasm and nucleus, whereas in Caco-2 and N2a cells, nearly no nuclear localization was observed. In addition, our studies indicate that the nuclear localization of N is essential for its caspase-6-mediated cleavage. These data suggest a correlation among the replication cycle of SARS-CoV, subcellular localization of N, induction of apoptosis, and the subsequent activation of caspases leading to cleavage of N.
- Published
- 2008
- Full Text
- View/download PDF
49. CpG and LPS can interfere negatively with prion clearance in macrophage and microglial cells
- Author
-
Yasmine Aguib, Sigrid Bülow, Elisabeth Kremmer, Hermann M. Schätzl, Frank Schmitz, Sabine Gilch, Stefan Bauer, and Claudia Kehler
- Subjects
Cell type ,Toll-like receptor ,Innate immune system ,animal diseases ,Cell ,Stimulation ,Cell Biology ,Biology ,Biochemistry ,In vitro ,nervous system diseases ,Cell biology ,medicine.anatomical_structure ,Immune system ,Immunology ,medicine ,Macrophage ,Molecular Biology - Abstract
Cells of the innate immune system play important roles in the progression of prion disease after peripheral infection. It has been found in vivo and in vitro that the expression of the cellular prion protein (PrP(c)) is up-regulated on stimulation of immune cells, also indicating the functional importance of PrP(c) in the immune system. The aim of our study was to investigate the impact of cytosine-phosphate-guanosine- and lipopolysaccharide-induced PrP(c) up-regulation on the uptake and processing of the pathological prion protein (PrP(Sc)) in phagocytic innate immune cells. For this purpose, we challenged the macrophage cell line J774, the microglial cell line BV-2 and primary bone marrow-derived macrophages in a resting or stimulated state with various prion strains, and monitored the uptake and clearance of PrP(Sc). Interestingly, stimulation led either to a transient increase in the level of PrP(Sc) relative to unstimulated cells or to a decelerated degradation of PrP(Sc). These features were dependent on cell type and prion strain. Our data indicate that the stimulation of innate immune cells may be able to support transient prion propagation, possibly explained by an increased PrP(c) cell surface expression in stimulated cells. We suggest that stimulation of innate immune cells can lead to an imbalance between the propagation and degradation of PrP(Sc).
- Published
- 2007
- Full Text
- View/download PDF
50. Therapeutic vaccination reduces HIV sequence variability
- Author
-
Frank D. Goebel, Volker Erfle, Antonio Cosma, Hermann M. Schätzl, Judith Seebach, Korbinian Strimmer, and Dieter Hoffmann
- Subjects
Modified vaccinia Ankara ,T-Lymphocytes ,viruses ,Biology ,Biochemistry ,Gene Products, nef ,Virus ,Genetics ,Humans ,Vector (molecular biology) ,Molecular Biology ,Gene ,Phylogeny ,AIDS Vaccines ,Acquired Immunodeficiency Syndrome ,Base Sequence ,Genetic Variation ,virus diseases ,Sequence Analysis, DNA ,Virology ,Vaccination ,Viral replication ,Immunization ,Immunology ,CD8 ,Biotechnology - Abstract
With HIV persisting lifelong in infected persons, therapeutic vaccination is a novel alternative concept to control virus replication. Even though CD8 and CD4 cell responses to such immunizations have been demonstrated, their effects on virus replication are still unclear. In view of this fact, we studied the impact of a therapeutic vaccination with HIV nef deliv- ered by a recombinant modified vaccinia Ankara vector on viral diversity. We investigated HIV sequences de- rived from chronically infected persons before and after therapeutic vaccination. Before immunization the mean SE pairwise variability of patient-derived Nef protein sequences was 0.1527 0.0041. After vaccina- tion the respective value was 0.1249 0.0042, resulting in a significant (P
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.