M. Querejeta, Adam K. Leroy, Benjamin W Keller, A. Razza, Guillermo A. Blanc, Jiayi Sun, Steven N. Longmore, Mélanie Chevance, Daniel A. Dale, Jérôme Pety, Andreas Schruba, Daizhong Liu, Annie Hughes, Sharon Meidt, Ralf S. Klessen, Toshiki Saito, A. Usero, Kathryn Grasha, Christopher M Faesi, Jaeyeon Kim, Frank Bigiel, Jonathan D. Henshaw, J. M. Diederik Kruijssen, Eva Schinnerer, Brent Groves, Kathryn Kreckel, Mark R. Krumholz, Eric Emsellem, Cinthya N. Herrera, Simon C. O. Glover, Ashley T. Barnes, Erik Rosolowsky, Zentrum für Astronomie der Universität Heidelberg (ZAH), Universität Heidelberg [Heidelberg] = Heidelberg University, Department of Astronomy and Astrophysics [UCSC Santa Cruz], University of California [Santa Cruz] (UC Santa Cruz), University of California (UC)-University of California (UC), Australian National University (ANU), Laboratoire Image, Ville, Environnement (LIVE), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), University of Alberta, Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Max-Planck-Institut für Extraterrestrische Physik (MPE), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, University of Wyoming (UW), and European Southern Observatory (ESO)
It is a major open question which physical processes stop the accretion of gas onto giant molecular clouds (GMCs) and limit the efficiency at which gas is converted into stars within these GMCs. While feedback from supernova explosions has been the popular feedback mechanism included in simulations of galaxy formation and evolution, `early' feedback mechanisms such as stellar winds, photoionisation and radiation pressure are expected to play an important role in dispersing the gas after the onset of star formation. These feedback processes typically take place on small scales ($\sim 10-100$ pc) and their effects have therefore been difficult to constrain in environments other than the Milky Way. We apply a novel statistical method to $\sim 1$" resolution maps of CO and Ha emission across a sample of nine nearby disc galaxies, in order to measure the time over which GMCs are dispersed by feedback from young, high-mass stars, as a function of the galactic environment. We find that GMCs are typically dispersed within $\sim$ 3 Myr after the emergence of unembedded high-mass stars, showing no significant trend with galactocentric radius. Comparison with analytical predictions demonstrates that, independently of the environment, early feedback mechanisms (particularly photoionisation and stellar winds) play a crucial role in dispersing GMCs and limiting their star formation efficiency in nearby galaxies. Finally, we show that the efficiency at which the energy injected by these early feedback mechanisms couples with the parent GMC is relatively low (a few tens of per cent), such that the vast majority of momentum and energy emitted by the young stellar populations escapes the parent GMC., Comment: 17 pages, 8 figures, 3 tables; submitted to MNRAS (October 23, 2020)