28 results on '"M. Preynas"'
Search Results
2. Manufacturing process and tests of a lower hybrid passive active multi-junction launcher for long pulse experiments on Tore-Supra
- Author
-
C. Goletto, J. C. Hatchressian, R. Lambert, C. Brun, M. Maury, J.H. Belo, B. Soler, L. Marfisi, A. Ekedahl, D. Guilhem, M. Chantant, M. Lyonne, M. Houry, Lena Delpech, Gilles Lombard, E. Delmas, C. Portafaix, J. Achard, A. Saille, M. Prou, A. Martinez, Julien Hillairet, D. Thouvenin, Bernard Bertrand, F. Bouquey, M. Preynas, P. Joubert, R. Magne, B. Zago, A. Argouarch, E. Rousset, E. Corbel, Gilles Berger-By, A. Armitano, J.M. Verger, S. Poli, D. Volpe, J.P. Joanard, F. Samaille, P. Fejoz, L. Doceul, F. Faisse, G. Agarici, Z. Bej, Marc Missirlian, M. Lipa, D. Raulin, S. Madeleine, Karl Vulliez, Patrick Mollard, and M. Goniche
- Subjects
Coupling ,Tokamak ,Materials science ,Mechanical Engineering ,Nuclear engineering ,Plasma ,Tore Supra ,law.invention ,Power (physics) ,Nuclear Energy and Engineering ,law ,Dielectric heating ,Active cooling ,General Materials Science ,Radio frequency ,Civil and Structural Engineering - Abstract
A new Passive Active Multijunction (PAM) Lower Hybrid heating and Current Drive (LHCD) launcher, has been successfully manufactured and tested on Tore-Supra (TS). The design and the fabrication of this new actively cooled launcher based on the PAM concept, as the present ITER LHCD design, is a major component of the TS CIMES project (Components for the Injection of Matter and Energy in Steady-state), and will play a key role in the TS near term program. To achieve 1000 s pulses with a power flux of 25 MW/m 2 the PAM launcher has been designed for steady state (CW) operation (active cooling) with the objective of coupling 2.7 MW of LHCD power to the plasma at 3.7 GHz with a parallel index N ∥ = 1.7 ± 0.2. The launcher has achieved its qualifications tests, i.e. low power Radio Frequency measurements, vacuum and hydraulic leak tests, and has been installed on Tore-Supra tokamak in September 2009. It is commissioning on plasma started a month later, quickly achieving its design performance of 2.7 MW on a 35 s pulse. After a technical description of the PAM, this paper presents an overview of the project phases (RF optimization, manufacturing and qualification) and concludes with the first experimental results of the PAM.
- Published
- 2011
3. Lower Hybrid antennas for nuclear fusion experiments
- Author
-
J. Decker, E. Delmas, Xuantong Ding, X. Courtois, V. Basiuk, J. Achard, Yu.F. Baranov, C. Balorin, R. Cesario, S. Poli, Pankaj Sharma, Sylvain Brémond, E. Corbel, Lena Delpech, Francesco Mirizzi, G.T. Hoang, M. Preynas, C. Goletto, T. Oosako, B. Saoutic, X. Y. Bai, J. P. Gunn, P. Hertout, V. Petrzilka, M. Prou, D. Douai, C. Castaldo, Julien Hillairet, J. Belo, D. Guilhem, Gilles Berger-By, R. Magne, Frederic Imbeaux, Y. Peysson, A. Bécoulet, A. Ekedahl, K. Kirov, J. Mailloux, F. Samaille, Silvio Ceccuzzi, Patrick Mollard, Y.S. Bae, F. Saint-Laurent, Didier Mazon, X. Litaudon, Ph. Moreau, M. Goniche, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), National Fusion Research Institute (NFRI), Southwestern Institute of Physics (SWIP), Euratom/CCFE Fusion Association, Associacao Euratom-IST, Universidade Tecnica de Lisboa, Associazione Euratom-ENEA sulla Fusione, Association Euratom/IPP.CR, Czech Academy of Sciences [Prague] (CAS), and Southwestern Institute of Physics
- Subjects
Tokamak ,Nuclear Fusion ,Phased array ,Nuclear engineering ,FOS: Physical sciences ,Tore Supra ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Current Drive ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,ITER ,0103 physical sciences ,Nuclear fusion ,Lower Hybrid ,010306 general physics ,Physics ,business.industry ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,Electrical engineering ,Plasma ,Fusion power ,high power ,Physics - Plasma Physics ,Power (physics) ,Plasma Physics (physics.plasm-ph) ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,phased array ,rectangular waveguide ,business - Abstract
International audience; The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of several hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as " Lower Hybrid " (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.
- Published
- 2015
- Full Text
- View/download PDF
4. Extension of the operational regime of the LHD towards a deuterium experiment
- Author
-
Takeshi Ido, Takeshi Higashiguchi, Noriyoshi Nakajima, M. Okamoto, Hideo Sugama, Hiroshi Yamada, Tsuyoshi Akiyama, Oliver Schmitz, Naoko Ashikawa, Shinsuke Satake, Masaharu Shiratani, Takashi Shimozuma, Kazuo Kawahata, M. Y. Tanaka, M. Ohno, Kazuo Toi, Shigeru Inagaki, Tetsuro Nagasaka, Shinji Hamaguchi, F. Castejón, Chihiro Suzuki, Arata Nishimura, J. Baldzuhn, M. Preynas, Masashi Kisaki, Hirohiko Tanaka, Y. Yamamoto, H. Miura, Takuya Saze, Y. Takemura, Yasunori Tanaka, Naofumi Akata, S. Morita, S. Sagara, Nobuaki Yoshida, Shinichiro Toda, Hisamichi Funaba, Osamu Yamagishi, Suguru Masuzaki, Ichihiro Yamada, Y. Takeuchi, Masaki Nishiura, Yutaka Matsumoto, José Luis Velasco, Kiyofumi Mukai, Yasuhiko Takeiri, Kazunori Koga, Motoshi Goto, Masanori Nunami, Arimichi Takayama, Chanho Moon, Ryuichi Sakamoto, Y. Hayashi, Ritoku Horiuchi, Hirotaka Chikaraishi, Seiji Ishiguro, Atsushi Ito, Yasuhiro Suzuki, Torsten Stange, R. Soga, Mieko Toida, Naoki Tamura, Kyosuke Shinohara, Hiroyuki A. Sakaue, Ryutaro Kanno, Hiroshi Kasahara, T. Kato, Gakushi Kawamura, Sadatsugu Takayama, K. Saito, Takeo Muroga, Seiya Nishimura, C. Skinner, Kensaku Kamiya, Sumio Kitajima, Katsuyoshi Tsumori, Tomohiro Morisaki, Izumi Murakami, Shin Kubo, K. Ito, Ryuhei Kumazawa, Shuji Kamio, Daisuke Nishijima, Masaki Osakabe, Juro Yagi, E. Bernard, Kazuya Takahata, Katsunori Ikeda, Osamu Mitarai, Motoki Nakata, Hiroyuki R. Takahashi, K. Nagaoka, Yuji Nakamura, Toseo Moritaka, Yasuhisa Oya, Hao Wang, N. Yamaguchi, Hayato Tsuchiya, Masayuki Yokoyama, Mizuki Sakamoto, Sadayoshi Murakami, Shinji Kobayashi, Akira Ejiri, Toshiyuki Mito, Suguru Takada, Masayuki Tokitani, I. A. Sharov, Mitsutaka Isobe, Sadatsugu Muto, Toru Ii Tsujimura, Daiji Kato, D. Gradic, Akihiro Ishizawa, Tsuguhiro Watanabe, R. Ishizaki, K.Y. Watanabe, C. Hidalgo, Shinsaku Imagawa, Keisuke Fujii, Ryohei Makino, Tokihiko Tokuzawa, Takashi Mutoh, Tetsuhiro Obana, Byron J. Peterson, M. Emoto, Hideya Nakanishi, Haruhisa Nakano, J.H. Lee, Sadao Masamune, Shinji Yoshimura, Yasushi Todo, Satoru Sakakibara, Teruya Tanaka, Mamoru Shoji, Katsumi Ida, Kenji Tanaka, Miyuki Yajima, T. Oishi, Shunsuke Usami, H. Noto, Akira Kohyama, Takuya Goto, Akio Sanpei, Yoshiro Narushima, Ryosuke Seki, Yasuo Yoshimura, A. Iwamoto, D. López-Bruna, Ryo Yasuhara, Yuji Nobuta, T. Kobayashi, Hiroki Hasegawa, Mikiro Yoshinuma, M. Sato, Naomichi Ezumi, K. Nishimura, Makoto I. Kobayashi, Hiroto Matsuura, Kazunobu Nagasaki, W.H. Ko, Yoshio Nagayama, Joon-Wook Ahn, E. Yatsuka, Yoshiki Hirooka, Naoki Mizuguchi, Nagato Yanagi, Tomo-Hiko Watanabe, Kunihiro Ogawa, Akihiro Shimizu, Osamu Kaneko, Katsuji Ichiguchi, Hitoshi Tamura, Gen Motojima, Tetsuo Seki, Takeo Nishitani, T. Bando, Y. Gunsu, Hiroaki Ohtani, Satoshi Ohdachi, J. Miyazawa, Hiroe Igami, Todd Evans, Yoshimitsu Hishinuma, Y. Ito, Noriyasu Ohno, and T. Ozaki
- Subjects
Nuclear and High Energy Physics ,Materials science ,stellarator/heliotron ,Extension (predicate logic) ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Large Helical Device ,impurity transport ,Deuterium ,Physics::Plasma Physics ,0103 physical sciences ,internal transport barrier ,Atomic physics ,010306 general physics ,Spectroscopy ,high beta plasma - Abstract
As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value $\left\langle \beta \right\rangle $ . The high $\left\langle \beta \right\rangle $ regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
- Published
- 2017
5. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra
- Author
-
X. Litaudon, A. Ekedahl, Julien Hillairet, M. Preynas, and M. Goniche
- Subjects
Coupling ,Tokamak ,Wave propagation ,law ,Chemistry ,Electronic engineering ,Context (language use) ,Ponderomotive force ,Tore Supra ,Antenna (radio) ,Computational physics ,law.invention ,Power density - Abstract
To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m2). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling for the first time on the FAM and PAM antennas on Tore Supra.
- Published
- 2014
6. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment
- Author
-
T. Wauters, M. Preynas, Matthias Otte, Heinrich P. Laqua, Torsten Stange, and D. Aßmus
- Subjects
Physics ,Electron density ,Tokamak ,Physics::Plasma Physics ,law ,Harmonic ,Plasma ,Atomic physics ,Effective radiated power ,Stellarator ,Electron cyclotron resonance ,law.invention ,Power (physics) - Abstract
Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.
- Published
- 2014
7. Ion and electron cyclotron wall conditioning in stellarator and tokamak magnetic field configuration on WEGA
- Author
-
Y. Altenburg, Torsten Stange, P. Urlings, D. Birus, M. Preynas, Matthias Otte, H. P. Laqua, D. Aßmus, T. Wauters, and F. Louche
- Subjects
Glow discharge ,Tokamak ,Chemistry ,law ,Cyclotron ,Plasma ,Atomic physics ,Ion cyclotron resonance ,Electron cyclotron resonance ,Stellarator ,law.invention ,Magnetic field - Abstract
Discharge wall conditioning is an effective tool to improve plasma performance in tokamaks and stellarators. RF Discharge Conditioning (RFDC) techniques are envisaged for use during operational campaigns on superconducting devices like the ITER tokamak and W7-X stellarator, as alternative to DC Glow Discharge Conditioning which is inefficient in presence of magnetic fields. This contribution investigates RFDC in both the ion and electron cyclotron range of frequencies (ICRF and ECRF) on the WEGA device (Max-Planck-Institute for Plasma Physics, Greifswald, Germany) as preparation for W7-X operation. ECRF discharges produced by localised absorption of RF power at EC resonance layers suffer from poor radial discharge homogeneity in the tokamak vacuum magnetic field configuration, severely limiting the plasma wetted wall areas and consequently the conditioning efficiency. The non-localised production of ICRF discharges by collisional RF power absorption features much improved discharge homogeneity making Ion Cyclotron Wall Conditioning (ICWC) the favoured RFDC technique for superconducting tokamaks. RFDC with the stellarator vacuum magnetic field needs to aim at sufficient plasma densities at and outside the last closed flux surface (LCFS), maximising the convective plasma flux along the open field lines to the wall. Whereas for ICRF discharges this condition is easily fulfilled, on WEGA for He-ECRF discharges this could be achieved as well by off axis heating close to the LCFS. In stellarator magnetic field configuration it is found that He-ICWC for wall desaturation is at least one order of magnitude more efficient than He-ECWC. Novel ECWC methods are proposed that can decrease this efficiency gap with ICWC to a factor 2-3. The efficiency difference is less pronounced in case of H2-ICWC and ECWC for isotopic exchange.
- Published
- 2014
8. Contribution of Tore Supra in preparation of ITER
- Author
-
B. Saoutic, J. Abiteboul, L. Allegretti, S. Allfrey, J.M. Ané, T. Aniel, A. Argouarch, J.F. Artaud, M.H. Aumenier, S. Balme, V. Basiuk, O. Baulaigue, P. Bayetti, A. Bécoulet, M. Bécoulet, M.S. Benkadda, F. Benoit, G. Berger-by, J.M. Bernard, B. Bertrand, P. Beyer, A. Bigand, J. Blum, D. Boilson, G. Bonhomme, H. Bottollier-Curtet, C. Bouchand, F. Bouquey, C. Bourdelle, S. Bourmaud, C. Brault, S. Brémond, C. Brosset, J. Bucalossi, Y. Buravand, P. Cara, V. Catherine-Dumont, A. Casati, M. Chantant, M. Chatelier, G. Chevet, D. Ciazynski, G. Ciraolo, F. Clairet, M. Coatanea-Gouachet, L. Colas, L. Commin, E. Corbel, Y. Corre, X. Courtois, R. Dachicourt, M. Dapena Febrer, M. Davi Joanny, R. Daviot, H. De Esch, J. Decker, P. Decool, P. Delaporte, E. Delchambre, E. Delmas, L. Delpech, C. Desgranges, P. Devynck, T. Dittmar, L. Doceul, D. Douai, H. Dougnac, J.L. Duchateau, B. Dugué, N. Dumas, R. Dumont, A. Durocher, F.X. Duthoit, A. Ekedahl, D. Elbeze, M. El Khaldi, F. Escourbiac, F. Faisse, G. Falchetto, M. Farge, J.L. Farjon, M. Faury, N. Fedorczak, C. Fenzi-Bonizec, M. Firdaouss, Y. Frauel, X. Garbet, J. Garcia, J.L. Gardarein, L. Gargiulo, P. Garibaldi, E. Gauthier, O. Gaye, A. Géraud, M. Geynet, P. Ghendrih, I. Giacalone, S. Gibert, C. Gil, G. Giruzzi, M. Goniche, V. Grandgirard, C. Grisolia, G. Gros, A. Grosman, R. Guigon, D. Guilhem, B. Guillerminet, R. Guirlet, J. Gunn, O. Gurcan, S. Hacquin, J.C. Hatchressian, P. Hennequin, C. Hernandez, P. Hertout, S. Heuraux, J. Hillairet, G.T. Hoang, C. Honore, M. Houry, T. Hutter, P. Huynh, G. Huysmans, F. Imbeaux, E. Joffrin, J. Johner, L. Jourd'Heuil, Y.S. Katharria, D. Keller, S.H. Kim, M. Kocan, M. Kubic, B. Lacroix, V. Lamaison, G. Latu, Y. Lausenaz, C. Laviron, F. Leroux, L. Letellier, M. Lipa, X. Litaudon, T. Loarer, P. Lotte, S. Madeleine, P. Magaud, P. Maget, R. Magne, L. Manenc, Y. Marandet, G. Marbach, J.L. Maréchal, L. Marfisi, C. Martin, G. Martin, V. Martin, A. Martinez, J.P. Martins, R. Masset, D. Mazon, N. Mellet, L. Mercadier, A. Merle, D. Meshcheriakov, O. Meyer, L. Million, M. Missirlian, P. Mollard, V. Moncada, P. Monier-Garbet, D. Moreau, P. Moreau, L. Morini, M. Nannini, M. Naiim Habib, E. Nardon, H. Nehme, C. Nguyen, S. Nicollet, R. Nouilletas, T. Ohsako, M. Ottaviani, S. Pamela, H. Parrat, P. Pastor, A.L. Pecquet, B. Pégourié, Y. Peysson, I. Porchy, C. Portafaix, M. Preynas, M. Prou, J.M. Raharijaona, N. Ravenel, C. Reux, P. Reynaud, M. Richou, H. Roche, P. Roubin, R. Sabot, F. Saint-Laurent, S. Salasca, F. Samaille, A. Santagiustina, Y. Sarazin, A. Semerok, J. Schlosser, M. Schneider, M. Schubert, F. Schwander, J.L. Ségui, G. Selig, P. Sharma, J. Signoret, A. Simonin, S. Song, E. Sonnendruker, F. Sourbier, P. Spuig, P. Tamain, M. Tena, J.M. Theis, D. Thouvenin, A. Torre, J.M. Travère, E. Tsitrone, J.C. Vallet, E. Van Der Plas, A. Vatry, J.M. Verger, L. Vermare, F. Villecroze, D. Villegas, R. Volpe, K. Vulliez, J. Wagrez, T. Wauters, L. Zani, D. Zarzoso, X.L. Zou, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Dept. Accelerateurs - XFEL, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut universitaire des systèmes thermiques industriels (IUSTI), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Matériaux et Mécanique des Composants (EDF R&D MMC), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Association EURATOM-CEA (CEA/DSM/DRFC), Département de Recherche sur la Fusion Contrôlée (DRFC), Laboratoire d'Interaction Laser Matière (LILM), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Ngee Ann Polytechnic, School of Engineering, Mechanical Engineering Division, ITER organization (ITER), CEA Cadarache, Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), CEA ISIS, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie de Clermont-Ferrand (ICCF), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-SIGMA Clermont (SIGMA Clermont)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Sciences et Techniques de la Ville - FR 2488 (IRSTV), Université de Nantes (UN)-École Centrale de Nantes (ECN)-EC. ARCHIT. NANTES-Université d'Angers (UA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Eau et Environnement (IFSTTAR/GERS/EE), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-PRES Université Nantes Angers Le Mans (UNAM), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Centre of Molecular and Structural Biomedicine (CBME)/Institute of Biotechnology and Bioengineering (IBB), University of Algarve [Portugal], Laboratoire Lasers, Plasmas et Procédés photoniques (LP3), Centre d'Histoire 'Espaces et Cultures' (CHEC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP), École des hautes études en sciences sociales (EHESS), Centre hospitalier universitaire de Nantes (CHU Nantes), Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM)-Hôtel-Dieu de Nantes-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hôpital Laennec-Centre National de la Recherche Scientifique (CNRS)-Faculté de Médecine d'Angers-Centre hospitalier universitaire de Nantes (CHU Nantes), Centre d'investigation clinique en cancérologie (CI2C), IFP Energies nouvelles (IFPEN), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Ecologie Systématique et Evolution (ESE), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Etude des Matériaux en Milieux Agressifs (LEMMA), Université de La Rochelle (ULR), CMCR des Massues, Croix rouge française, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Réserve Naturelle Nationale Baie St-Brieuc, Réserves Naturelles de France-Réserves Naturelles de France, Géoazur (GEOAZUR 6526), Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Direction des Jardins botaniques et zoologiques, Muséum national d'Histoire naturelle (MNHN), Department of Information Technology (INTEC), Ghent University [Belgium] (UGENT), Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile (DIASS), Dipartimento Ingn Ambiente & Sviluppo Soste, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2), Equipe Dynamique des Systemes Complexes, Université de Provence - Aix-Marseille 1, Technische Universität Braunschweig [Braunschweig], Laboratoire de physique des milieux ionisés et applications (LPMIA), Université Henri Poincaré - Nancy 1 (UHP)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon], Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Service de Chimie Physique (SCP), Laboratoire des Adaptations Physiologiques aux Activités Physiques (LAPHAP), Université de Poitiers, Institut d'Electronique du Solide et des Systèmes ( InESS ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Science et Ingénierie des Matériaux et Procédés ( SIMaP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies ( FEMTO-ST ), Université de Technologie de Belfort-Montbeliard ( UTBM ) -Ecole Nationale Supérieure de Mécanique et des Microtechniques ( ENSMM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Institut universitaire des systèmes thermiques industriels ( IUSTI ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), EDF - R&D Department MMC and MAI, EDF R&D ( EDF R&D ), EDF ( EDF ) -EDF ( EDF ), Association EURATOM-CEA ( CEA/DSM/DRFC ), Département de Recherche sur la Fusion Contrôlée ( DRFC ), Laboratoire d'Interaction Laser Matière ( LILM ), Département de Physico-Chimie ( DPC ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique des Plasmas ( LPP ), Université Paris-Sud - Paris 11 ( UP11 ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Observatoire de Paris-École polytechnique ( X ) -Sorbonne Universités-PSL Research University ( PSL ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Département de Physique Nucléaire (ex SPhN) ( DPHN ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, ITER [St. Paul-lez-Durance], ITER, Centre de Thermique de Lyon ( CETHIL ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Institut de Chimie de Clermont-Ferrand ( ICCF ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ) -Sigma CLERMONT ( Sigma CLERMONT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche en Sciences et Techniques de la Ville ( IRSTV ), Université d'Angers ( UA ) -Université de Nantes ( UN ) -École Centrale de Nantes ( ECN ) -Université de La Rochelle ( ULR ) -EC. ARCHIT. NANTES-Centre National de la Recherche Scientifique ( CNRS ), Eau et Environnement ( IFSTTAR/GERS/EE ), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ) -PRES Université Nantes Angers Le Mans ( UNAM ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Intégration des Systèmes et des Technologies ( LIST ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Institut des Sciences de l'Evolution de Montpellier ( ISEM ), Université de Montpellier ( UM ) -Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Lasers, Plasmas et Procédés photoniques ( LP3 ), Centre d'Histoire 'Espaces et Cultures' ( CHEC ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ), École des hautes études en sciences sociales ( EHESS ), Centre hospitalier universitaire de Nantes ( CHU Nantes ), Centre de Recherche en Cancérologie / Nantes - Angers ( CRCNA ), CHU Angers-Centre hospitalier universitaire de Nantes ( CHU Nantes ) -Hôtel-Dieu de Nantes-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Hôpital Laennec-Centre National de la Recherche Scientifique ( CNRS ) -Faculté de Médecine d'Angers, Centre d'investigation clinique en cancérologie ( CI2C ), IFP Energies nouvelles ( IFPEN ), Matériaux, ingénierie et science [Villeurbanne] ( MATEIS ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ), Ecologie Systématique et Evolution ( ESE ), Université Paris-Sud - Paris 11 ( UP11 ) -AgroParisTech-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Etude des Matériaux en Milieux Agressifs ( LEMMA ), Université de La Rochelle ( ULR ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Croix-rouge française, Procédés et Ingénierie en Mécanique et Matériaux [Paris] ( PIMM ), Centre National de la Recherche Scientifique ( CNRS ) -Conservatoire National des Arts et Métiers [CNAM] ( CNAM ), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation ( IMEP-LAHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Institut National Polytechnique de Grenoble ( INPG ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Université Grenoble Alpes ( UGA ), Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Géoazur ( GEOAZUR ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Réserve de la Haute Touche, Muséum National d'Histoire Naturelle ( MNHN ), Department of Information Technology ( INTEC ), Ghent University [Belgium] ( UGENT ), Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile ( DIASS ), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier ( ICGM ICMMM ), Université Montpellier 1 ( UM1 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Physique des milieux ionisés et applications ( LPMIA ), Université Henri Poincaré - Nancy 1 ( UHP ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherche en Cancérologie de Lyon ( CRCL ), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Bureau de Recherches Géologiques et Minières (BRGM) ( BRGM ), Catalyse par les métaux, Institut de Chimie des Milieux et Matériaux de Poitiers ( IC2MP ), Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ) -Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ), Service de Chimie Physique ( SCP ), Laboratoire des Adaptations Physiologiques aux Activités Physiques ( LAPHAP ), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université d'Angers (UA)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Université de La Rochelle (ULR)-EC. ARCHIT. NANTES-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,[ PHYS ] Physics [physics] ,Plasma parameters ,Ripple ,Plasma ,Tore Supra ,Collisionality ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,symbols.namesake ,Nuclear magnetic resonance ,Physics::Plasma Physics ,0103 physical sciences ,symbols ,Langmuir probe ,Electron temperature ,010306 general physics ,Power density - Abstract
International audience; Tore Supra routinely addresses the physics and technology of very long-duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant lower hybrid current drive (LHCD) launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current pro le have been controlled in real-time featuring (i) control of sawteeth with varying plasma parameters, (ii) obtaining and sustaining a `hot core' plasma regime, (iii) recovery from a voluntarily triggered deleterious magnetohydrodynamic regime. The scrape-off layer (SOL) parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q = 2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic eld has been investigated, culminating in the demonstration that this conditioning scheme allows one to recover normal operation after disruptions. The effect of the magnetic eld ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results with predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density uctuations and wavenumber spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent uctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL.
- Published
- 2011
9. Iter like lower hybrid Passive Active Multi-Junction antenna manufacturing and tests
- Author
-
A. Argouarch, M. Houry, D. Raulin, A. Saille, F. Faisse, Julien Hillairet, D. Volpe, Jc. Hatchressian, B. Zago, Jh. Belo, Karl Vulliez, M. Lipa, Lena Delpech, Gilles Lombard, D. Thouvenin, Gilles Berger-By, Marc Missirlian, J. Achard, M. Prou, A. Martinez, S. Madeleine, Jp. Joanard, F. Samaille, E. Corbel, Patrick Mollard, G. Agarici, C. Goletto, Bernard Bertrand, R. Magne, Z. Bej, T. Hoang, Jm. Verger, S. Poli, D. Guilhem, M. Chantant, M. Goniche, L. Marfisi, R. Lambert, C. Brun, C. Portafaix, E. Delmas, M. Maury, A. Armitano, P. Fejoz, A. Ekedahl, L. Doceul, M. Preynas, M. Lyonne, B. Soler, F. Bouquey, P. Joubert, and E. Rousset
- Subjects
Coupling ,Engineering ,Tokamak ,business.industry ,Electrical engineering ,Mechanical engineering ,Converters ,Tore Supra ,law.invention ,Design objective ,law ,Radio frequency ,Antenna (radio) ,business ,Power density - Abstract
A new concept of multijunction-type antenna has been developed, the Passive Active Multijunction, which improves the cooling of the waveguides and the damping of the neutron energy (for ITER) compared to Full Active Multijunction. Due to the complexity of the structures, prototypes of the mode converters and of the Passive-Active-Multijunction launcher were fabricated and tested, in order to validate the different manufacturing processes and the manufacturer's capability to face this challenging project. This paper describes the manufacturing process, the tests of the various prototypes and the construction of the final Passive-Active-Multijunction launcher, which entered into operation in October 2009. It has been commissioned and is fully operational on the Tore-Supra tokamak, since design objectives were reached in March 2010: 2.75 MW - 78 s, power density of 25MW/m2 in active waveguides, steady-state apparent surface temperatures < 350 °C; 10 cm long distance coupling.
- Published
- 2011
10. Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling
- Author
-
M. Preynas, A. Ekedahl, N. Fedorczak, M. Goniche, D. Guilhem, J. P. Gunn, J. Hillairet, X. Litaudon, Cynthia K. Phillips, and James R. Wilson
- Subjects
Physics ,Coupling ,Tokamak ,business.industry ,Tore Supra ,Electromagnetic radiation ,law.invention ,Physics::Plasma Physics ,Aloha ,law ,Electrical equipment ,Electronic engineering ,Nuclear fusion ,Aerospace engineering ,Antenna (radio) ,business ,Computer Science::Information Theory - Abstract
A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.
- Published
- 2011
11. Long Pulse operation with the ITER-Relevant LHCD Antenna in Tore Supra
- Author
-
A. Ekedahl, L. Delpech, M. Goniche, D. Guilhem, J. Hillairet, M. Preynas, P. K. Sharma, J. Achard, Y. S. Bae, X. Bai, C. Balorin, Y. Baranov, V. Basiuk, A. Bécoulet, J. Belo, G. Berger-By, S. Brémond, C. Castaldo, S. Ceccuzzi, R. Cesario, E. Corbel, X. Courtois, J. Decker, E. Delmas, B. J. Ding, X. Ding, D. Douai, R. Dumont, C. Goletto, J. P. Gunn, P. Hertout, G. T. Hoang, F. Imbeaux, K. Kirov, X. Litaudon, P. Lotte, P. Maget, R. Magne, J. Mailloux, D. Mazon, F. Mirizzi, P. Mollard, P. Moreau, T. Oosako, V. Petrzilka, Y. Peysson, S. Poli, M. Prou, F. Saint-Laurent, F. Samaille, Cynthia K. Phillips, and James R. Wilson
- Subjects
Coupling ,Engineering ,Tokamak ,Maximum power principle ,business.industry ,Nuclear engineering ,Electrical engineering ,Plasma ,Tore Supra ,law.invention ,Power (physics) ,law ,Reflection coefficient ,Antenna (radio) ,business - Abstract
The aim of the Tore Supra tokamak is to address physics and technology issues of long pulse discharges. For this purpose, Tore Supra is equipped with two actively cooled Lower Hybrid Current Drive (LHCD) antennas (f = 3.7GHz), designed to operate in 1000s long pulses. One of these is the recently installed passive active multijunction (PAM) antenna, whose design is chosen for an LHCD system for ITER. The first experiments with the PAM antenna in Tore Supra have shown extremely encouraging results in terms of reflection coefficient behaviour and power handling. The maximum power and energy reached on the PAM, after ~500 pulses on plasma, was 2.7MW during 78s (exceeding 200MJ injected energy). In addition, 2.7MW has been coupled at a plasma‐antenna distance of 10cm. The coupling behaviour on the PAM, characterised by the fraction of reflected power (RC), shows good agreement with the predictions from the ALOHA coupling code. Full non‐inductive discharges lasting 50s have been sustained with the PAM alone, e...
- Published
- 2011
12. ALOHA: an Advanced LOwer Hybrid Antenna coupling code
- Author
-
Damien Voyer, Daniele Milanesio, M. Preynas, Michal Kazda, Julien Hillairet, Marc Goniche, Annika Ekedahl, Orso Meneghini, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Ampère (AMPERE), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Massachusetts Institute of Technology (MIT), and Politecnico di Torino = Polytechnic of Turin (Polito)
- Subjects
Coupling ,Physics ,Nuclear and High Energy Physics ,business.industry ,Computation ,Magnetic confinement fusion ,Tore Supra ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Optics ,52.35.Hr, 52.25.Gj, 52.65.Ff, 52.40.Fd, 52.55.Fa, 28.52.Av ,law ,Aloha ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Electronic engineering ,Code (cryptography) ,Antenna (radio) ,010306 general physics ,business ,Waveguide ,Computer Science::Information Theory - Abstract
International audience; The Advanced LOwer Hybrid Antenna (ALOHA) code, has been developed to improve the modelling of the coupling of lower hybrid (LH) waves from the antenna to a cold inhomogeneous plasma while keeping a fast tool. In contrast to the previous code Slow Wave ANtenna (SWAN) (that only described the interaction of the slow wave between the waveguides and the plasma in a 1D model), the equations are now solved in 2D including the contribution of both the slow and fast waves, with a low computational cost. This approach is completed either by a full-wave computation of the antenna that takes into account its detailed geometry or by a mode-matching code dedicated to multijunctions modelling, which is convenient in preliminary design phases. Moreover, ALOHA can treat more realistic scrape-off layers in front of the antenna, by using a two-layer electron density profile. The ALOHA code has been compared with experimental results from Tore Supra LH antennas of different geometries, as well as benchmarked against other LH coupling codes, with very good results. Once validated, ALOHA has been used as a support for the design of COMPASS and ITER LH antennas and has shown to be a fast and reliable tool for LH antenna design.
- Published
- 2010
13. Overview of experimental results and code validation activities at Alcator C-Mod
- Author
-
R. Ochoukov, J.R. Walk, R.R. Parker, A.N. James, Naoto Tsujii, Robert Ellis, Jay Kesner, S. D. Scott, G.M. Olynyk, Jungpyo Lee, Ralph Kube, Vlad Soukhanovskii, Earl Marmar, G.M. Wallace, Z.S. Hartwig, S.J. Wukitch, D. L. Brower, K. T. Liao, Aaron Bader, S. Park, John Rice, J. Stillerman, M.L. Garrett, W. Burke, S. Harrison, G. Dekow, L.E. Sugiyama, C. Yang, Seung Gyou Baek, Odd Erik Garcia, R.F. Vieira, Amanda Hubbard, G. A. Wurden, R. W. Harvey, Orso Meneghini, M. Chilenski, Yu-Ming Lin, Cornwall Lau, Michael Brookman, W. Beck, P. McGibbon, L. F. Delgado-Aparicio, Christian Theiler, M. Preynas, D.R. Miller, C. Gao, Jeff Candy, Matthew Reinke, Anne White, William L. Rowan, John Wright, Robert Mumgaard, James R. Wilson, Julien Hillairet, C.P. Kasten, D.G. Whyte, Eugene A. Fitzgerald, R. J. Groebner, Paul Ennever, C.L. Fiore, Theodore Golfinopoulos, P. B. Snyder, Istvan Cziegler, R. Murray, E. Davis, Istvan Pusztai, Weixing Ding, M. Chung, Thomas W. Fredian, Martin Greenwald, Yuri Podpaly, Brian LaBombard, Harold Barnard, Ian H. Hutchinson, W. Bergerson, Syun'ichi Shiraiwa, Ahmed Diallo, Brandon Sorbom, Robert Granetz, K. B. Woller, J. M. Sierchio, A. Kanojia, Manfred Bitter, P. Xu, Y. Ma, D.R. Ernst, Dan Brunner, J. H. Irby, D. R. Mikkelsen, P.T. Bonoli, Jerry Hughes, Stewart Zweben, D. Terry, G.M. Wright, S.M. Wolfe, Igor Bespamyatnov, Nathan Howard, Ian Faust, David Pace, Choongki Sung, Miklos Porkolab, A. Dominguez, J.L. Terry, C.E. Kessel, M. Churchill, K. W. Hill, and Bruce Lipschultz
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,Divertor ,Cyclotron ,Extrapolation ,Plasma ,Condensed Matter Physics ,law.invention ,Computational physics ,Pedestal ,Alcator C-Mod ,law ,Scaling - Abstract
Recent research on the Alcator C-Mod tokamak has focused on a range of scientific issues with particular emphasis on ITER needs and on detailed comparisons between experimental measurements and predictive models. Research on ICRF (ion cyclotron range of frequencies) heating emphasized the origins and mitigation of metallic impurities while work on lower hybrid current drive experiments have focused on linear and nonlinear wave interactions that limit efficiency at high densities in regimes with low single pass absorption. Experiments in core turbulence and transport focused on quantitative, multi-field comparisons between nonlinear gyro-kinetics simulations and experimental measurements of profiles, fluxes and fluctuations. Experiments into self-generated rotation observed spontaneous flow reversal at a critical density identical to the transition density between linear ohmic confinement and saturated ohmic confinement regimes. H-mode studies have measured pedestal widths consistent with kinetic-ballooning-mode-like instabilities, while the pedestal heights quantitatively match the EPED code predictions. Experiments with I-mode have increased the operating window for this promising edge-localized-mode-free regime. Extrapolation of I-mode to ITER suggests that the fusion gain Q ~ 10 could be possible in ITER. Investigations into the physics and scaling of the power exhaust channel width in attached enhanced D-alpha H-mode and L-mode plasma showed a direct connection between the midplane pressure-folding length and the outer divertor target footprint. The width was found to scale inversely with IP, while being independent of conducted power, BT or q95 and insensitive to the scrape-off layer connection length - a behaviour that suggests critical-gradient physics sets both pressure and heat-flux profiles.
- Published
- 2013
14. Advances in lower hybrid current drive technology on Alcator C-Mod
- Author
-
Ian Faust, R. Leccacorvi, W. Beck, P. MacGibbon, Lihua Zhou, R. Murray, R.R. Parker, S.J. Wukitch, J.A. Casey, Gregory Wallace, Syun'ichi Shiraiwa, A. Kanojia, Julien Hillairet, R.F. Vieira, D. Terry, M. Preynas, P. Koert, Eugene A. Fitzgerald, Orso Meneghini, James R. Wilson, D.K. Johnson, J. Doody, Yu-Ming Lin, and Cornwall Lau
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,Klystron ,business.industry ,Electrical engineering ,Pulse duration ,Tuner ,Condensed Matter Physics ,law.invention ,Alcator C-Mod ,law ,Limiter ,Antenna (radio) ,business ,Waveguide - Abstract
Lower hybrid current drive (LHCD) is an attractive option for non-inductive tokamak operation due to its high current drive efficiency and ability to drive current off axis. The parameters of the Alcator C-Mod LHCD system (f0 = 4.6 GHz, Bφ ≃ 5.5 T, ) are similar to the proposed LHCD system on ITER. This paper will describe improvements in LHCD technology on C-Mod designed to increase single-pass absorption at high , extend pulse length (to >3 s), and increase power delivered to the plasma (to ∼2 MW). Modelling of lower hybrid (LH) wave propagation indicates that the observed loss of LHCD efficiency at higher can be mitigated by enhancing the single pass power absorption through use of an off mid-plane launcher. The four rows of the launcher are located above the mid-plane (with Ip and Bφ both clockwise viewing from the top down) in order to exploit the poloidal upshift of n‖ as rays propagate from the antenna into the plasma. The transmitter protection system (TPS) was redesigned to model the coolant temperature in real time and shut off the klystron beam voltage if the coolant is close to boiling. The TPS upgrade has been installed and operated on C-Mod for pulses up to 4.5 s into dummy loads and 1.0 s into the plasma. A new movable local LH launcher protection limiter was designed to reduce reflection coefficients across a wide range of launcher positions. Finally, a high power waveguide double-stub tuner is under development to provide feedback controlled load matching to reduce power reflected from the antenna under poor coupling conditions.
- Published
- 2013
15. Lower hybrid current drive at high density on Tore Supra
- Author
-
X. Litaudon, Didier Mazon, Gilles Berger-By, J. Decker, Pankaj Sharma, M. Preynas, J. P. Gunn, Annika Ekedahl, Julien Hillairet, G. Antar, Lena Delpech, Takuya Oosako, M. Prou, Y. Peysson, F. Clairet, M. Goniche, V. Basiuk, E. Nilsson, and J. L. Segui
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Materials science ,Cyclotron ,Bremsstrahlung ,Electron ,Plasma ,Tore Supra ,Condensed Matter Physics ,Electromagnetic radiation ,law.invention ,law ,Atomic physics ,Lepton - Abstract
Lower hybrid current drive (LHCD) experiments with line-averaged density varying between 1.5 x 1019 and 6 x 10(19) m(-3) are performed on the Tore Supra tokamak under quasi-steady-state conditions with respect to the fast electron dynamics. The LHCD efficiency is analysed from the fast electron bremsstrahlung (FEB) and electron cyclotron emission (ECE). The effect of plasma equilibrium and particle fuelling is documented. It is concluded that the fast decay of FEB with plasma density could be consistent with simple scaling of the current drive efficiency and FEB. Plasma edge measurements are presented looking for the effect on fast electron emission. In a specific case of particle fuelling, an anomalous decay of the hard x-ray and ECE signals suggests deleterious interaction of the wave with edge plasma.
- Published
- 2013
16. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra
- Author
-
L. Colas, Julien Hillairet, M. Goniche, M. Preynas, A. Ekedahl, and X. Litaudon
- Subjects
Physics ,Coupling ,Nuclear and High Energy Physics ,Wave propagation ,Plasma ,Ponderomotive force ,Tore Supra ,Condensed Matter Physics ,Lower hybrid oscillation ,Computational physics ,Nuclear magnetic resonance ,Physics::Plasma Physics ,Reflection (physics) ,Antenna (radio) - Abstract
To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave–plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.
- Published
- 2013
17. Coupling characteristics of the ITER-relevant lower hybrid antenna in Tore Supra: experiments and modelling
- Author
-
T. Ohsako, E. Corbel, A. Ekedahl, X. Litaudon, Lena Delpech, J. P. Gunn, D. Guilhem, Julien Hillairet, Nicolas Fedorczak, M. Goniche, M. Preynas, Gilles Berger-By, J. Belo, J. Achard, and M. Prou
- Subjects
Coupling ,Physics ,Nuclear and High Energy Physics ,Electron density ,Tokamak ,business.industry ,Antenna aperture ,Tore Supra ,Condensed Matter Physics ,law.invention ,Optics ,Nuclear magnetic resonance ,Physics::Plasma Physics ,law ,Aloha ,Reflection (physics) ,Antenna (radio) ,business ,Computer Science::Information Theory - Abstract
A new concept of lower hybrid antenna for current drive has been proposed for ITER (Bibet et al 1995 Nucl. Fusion 35 1213–23): the passive active multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has recently been installed on the tokamak Tore Supra. This paper summarizes the comprehensive experimental characterization of the coupling properties of the PAM antenna to the Tore Supra plasmas. In this paper, the electromagnetic properties of the antenna are measured at a reduced power (n c to 10 × n c where n c is the slow wave density cut-off, n c = 1.7 × 1017 m−3 at 3.7 GHz) and antenna phasing, the ALOHA simulations reproduce the experimental results observed on Tore Supra. In addition, reduced power reflection coefficients (n c, i.e. in the range 0.5–3 × n c. Measurement and analysis with ALOHA of the antenna–plasma scattering matrices provide explanation of the good coupling properties of the PAM antenna close to n c by highlighting the crucial role of the slow wave intercoupling between active and passive waveguides through the plasma edge. This detailed validation of the coupling modelling is an important step towards the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.
- Published
- 2011
18. Validation of the ITER-relevant passive-active-multijunction LHCD launcher on long pulses in Tore Supra
- Author
-
P. Moreau, V. Petrzilka, A. Bécoulet, D. Douai, X. Y. Bai, E. Delmas, B. Saoutic, J. Decker, M. Prou, J. Belo, P. Hertout, Xuantong Ding, Takuya Oosako, R. Magne, Gilles Berger-By, V. Basiuk, G.T. Hoang, C. Balorin, Francesco Mirizzi, E. Corbel, A. Ekedahl, M. Preynas, K. Kirov, Young-Soon Bae, J. P. Gunn, J. Mailloux, Patrick Mollard, F. Saint-Laurent, C. Castaldo, Julien Hillairet, Y. Peysson, Pankaj Sharma, X. Courtois, Lena Delpech, J. Achard, D. Guilhem, C. Goletto, Didier Mazon, Frederic Imbeaux, Sylvain Brémond, Marc Goniche, S. Poli, X. Litaudon, Silvio Ceccuzzi, F. Samaille, Yu.F. Baranov, and R. Cesario
- Subjects
Physics ,Coupling ,Nuclear and High Energy Physics ,Tokamak ,Maximum power principle ,Nuclear engineering ,Magnetic confinement fusion ,Tore Supra ,Condensed Matter Physics ,law.invention ,Nuclear magnetic resonance ,law ,Reflection (physics) ,Pulse-width modulation ,Power density - Abstract
A new ITER-relevant lower hybrid current drive (LHCD) launcher, based on the passive-active-multijunction (PAM) concept, was brought into operation on the Tore Supra tokamak in autumn 2009. The PAM launcher concept was designed in view of ITER to allow efficient cooling of the waveguides, as required for long pulse operation. In addition, it offers low power reflection close to the cut-off density, which is very attractive for ITER, where the large distance between the plasma and the wall may bring the density in front of the launcher to low values. The first experimental campaign on Tore Supra has shown extremely encouraging results in terms of reflected power level and power handling. Power reflection coefficient −2, i.e. its design value at f = 3.7 GHz. In addition, 2.7 MW has been coupled at a plasma–launcher distance of 10 cm, with a power reflection coefficient
- Published
- 2010
19. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator
- Author
-
S. Marsen, H. P. Laqua, V. Moncada, M. Preynas, J.-M. Travere, Yann Corre, and A. Reintrog
- Subjects
Materials science ,business.industry ,Nuclear engineering ,Plasma ,7. Clean energy ,Electron cyclotron resonance ,law.invention ,Data acquisition ,law ,Computer data storage ,Nuclear fusion ,Plasma diagnostics ,Wendelstein 7-X ,business ,Instrumentation ,Stellarator - Abstract
The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.
20. Science and technology research and development in support to ITER and the Broader Approach at CEA
- Author
-
A. Bécoulet, G.T. Hoang, J. Abiteboul, J. Achard, T. Alarcon, J. Alba-Duran, L. Allegretti, S. Allfrey, S. Amiel, J.M. Ané, T. Aniel, G. Antar, A. Argouarch, A. Armitano, J. Arnaud, D. Arranger, J.F. Artaud, D. Audisio, M. Aumeunier, E. Autissier, L. Azcona, A. Back, A. Bahat, X. Bai, B. Baiocchi, D. Balaguer, S. Balme, C. Balorin, O. Barana, D. Barbier, A. Barbuti, V. Basiuk, O. Baulaigue, P. Bayetti, C. Baylard, S. Beaufils, A. Beaute, M. Bécoulet, Z. Bej, S. Benkadda, F. Benoit, G. Berger-By, J.M. Bernard, A. Berne, B. Bertrand, E. Bertrand, P. Beyer, A. Bigand, G. Bonhomme, G. Borel, A. Boron, C. Bottereau, H. Bottollier-Curtet, C. Bouchand, F. Bouquey, C. Bourdelle, J. Bourg, S. Bourmaud, S. Brémond, F. Bribiesca Argomedo, M. Brieu, C. Brun, V. Bruno, J. Bucalossi, H. Bufferand, Y. Buravand, L. Cai, V. Cantone, B. Cantone, E. Caprin, T. Cartier-Michaud, A. Castagliolo, J. Belo, V. Catherine-Dumont, G. Caulier, J. Chaix, M. Chantant, M. Chatelier, D. Chauvin, J. Chenevois, B. Chouli, L. Christin, D. Ciazynski, G. Ciraolo, F. Clairet, R. Clapier, H. Cloez, M. Coatanea-Gouachet, L. Colas, G. Colledani, L. Commin, P. Coquillat, E. Corbel, Y. Corre, J. Cottet, P. Cottier, X. Courtois, I. Crest, R. Dachicourt, M. Dapena Febrer, C. Daumas, H.P.L. de Esch, B. De Gentile, C. Dechelle, J. Decker, P. Decool, V. Deghaye, J. Delaplanche, E. Delchambre-Demoncheaux, L. Delpech, C. Desgranges, P. Devynck, J. Dias Pereira Bernardo, G. Dif-Pradalier, L. Doceul, Y. Dong, D. Douai, H. Dougnac, N. Dubuit, J.-L. Duchateau, L. Ducobu, B. Dugue, N. Dumas, R. Dumont, A. Durocher, F. Duthoit, A. Ekedahl, D. Elbeze, A. Escarguel, J. Escop, F. Faïsse, G. Falchetto, J. Farjon, M. Faury, N. Fedorzack, P. Féjoz, C. Fenzi, F. Ferlay, P. Fiet, M. Firdaouss, M. Francisquez, B. Franel, J. Frauche, Y. Frauel, R. Futtersack, X. Garbet, J. Garcia, J. Gardarein, L. Gargiulo, P. Garibaldi, P. Garin, D. Garnier, E. Gauthier, O. Gaye, A. Geraud, M. Gerome, V. Gervaise, M. Geynet, P. Ghendrih, I. Giacalone, S. Gibert, C. Gil, S. Ginoux, L. Giovannangelo, S. Girard, G. Giruzzi, C. Goletto, R. Goncalves, R. Gonde, M. Goniche, R. Goswami, C. Grand, V. Grandgirard, B. Gravil, C. Grisolia, G. Gros, A. Grosman, J. Guigue, D. Guilhem, C. Guillemaut, B. Guillerminet, Z. Guimaraes Filho, R. Guirlet, J. P. Gunn, O. Gurcan, F. Guzman, S. Hacquin, F. Hariri, F. Hasenbeck, J.C. Hatchressian, P. Hennequin, C. Hernandez, P. Hertout, S. Heuraux, J. Hillairet, C. Honore, G. Hornung, M. Houry, I. Hunstad, T. Hutter, P. Huynh, V. Icard, F. Imbeaux, M. Irishkin, L. Isoardi, J. Jacquinot, J. Jacquot, G. Jiolat, M. Joanny, E. Joffrin, J. Johner, P. Joubert, L. Jourd'Heuil, M. Jouve, C. Junique, D. Keller, C. Klepper, D. Kogut, M. Kubič, F. Labassé, B. Lacroix, Y. Lallier, V. Lamaison, R. Lambert, S. Larroque, G. Latu, Y. Lausenaz, C. Laviron, R. Le, A. Le Luyer, C. Le Niliot, Y. Le Tonqueze, P. Lebourg, T. Lefevre, F. Leroux, L. Letellier, Y. Li, M. Lipa, J. Lister, X. Litaudon, F. Liu, T. Loarer, G. Lombard, P. Lotte, M. Lozano, J. Lucas, H. Lütjens, P. Magaud, P. Maget, R. Magne, J.-F. Mahieu, P. Maini, P. Malard, L. Manenc, Y. Marandet, G. Marbach, J.-L. Marechal, L. Marfisi, M. Marle, C. Martin, V. Martin, G. Martin, A. Martinez, P. Martino, R. Masset, D. Mazon, N. Mellet, L. Mercadier, A. Merle, D. Meshcheriakov, P. Messina, O. Meyer, L. Millon, M. Missirlian, J. Moerel, D. Molina, P. Mollard, V. Moncada, P. Monier-Garbet, D. Moreau, M. Moreau, P. Moreau, P. Morel, T. Moriyama, Y. Motassim, G. Mougeolle, D. Moulton, G. Moureau, D. Mouyon, M. Naim Habib, E. Nardon, V. Négrier, J. Nemeth, C. Nguyen, M. Nguyen, L. Nicolas, T. Nicolas, S. Nicollet, E. Nilsson, B. N'Konga, F. Noel, A. Nooman, C. Norscini, R. Nouailletas, P. Oddon, T. Ohsako, F. Orain, M. Ottaviani, M. Pagano, F. Palermo, S. Panayotis, H. Parrat, J.-Y. Pascal, C. Passeron, P. Pastor, J. Patterlini, K. Pavy, A.-L. Pecquet, B. Pégourié, C. Peinturier, T. Pelletier, B. Peluso, V. Petrzilka, Y. Peysson, E. Pignoly, R. Pirola, C. Pocheau, E. Poitevin, V. Poli, S. Poli, F. Pompon, I. Porchy, C. Portafaix, M. Preynas, P. Prochet, M. Prou, A. Ratnani, D. Raulin, N. Ravenel, S. Renard, B. Ricaud, M. Richou, G. Ritz, H. Roche, P. Roubin, C. Roux, K. Ruiz, F. Sabathier, R. Sabot, A. Saille, F. Saint-Laurent, R. Sakamoto, S. Salasca, T. Salmon, F. Samaille, S. Sanchez, A. Santagiustina, B. Saoutic, Y. Sarazin, P. Sardain, J. Schlosser, M. Schneider, J. Schwob, J. Segui, N. Seguin, G. Selig, D. Serret, J. Signoret, A. Simonin, M. Soldaini, B. Soler, C. Soltane, S. Song, F. Sourbier, J. Sparagna, P. Spitz, P. Spuig, A. Storelli, A. Strugarek, P. Tamain, M. Tena, J. Theis, O. Thomine, D. Thouvenin, A. Torre, L. Toulouse, J. Travère, E. Tsitrone, B. Turck, J. Urban, J.-C. Vallet, J. Vallory, A. Valognes, J. Van Helvoirt, S. Vartanian, J.-M. Verger, L. Vermare, C. Vermare, D. Vezinet, K. Vicente, J. Vidal, N. Vignal, T. Vigne, F. Villecroze, E. Villedieu, B. Vincent, B. Volpe, D. Volpe, R. Volpe, J. Wagrez, H. Wang, T. Wauters, O. Wintersdorff, E. Wittebol, B. Zago, L. Zani, D. Zarzoso, Y. Zhang, W. Zhong, X.L. Zou, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Engineering ,Tokamak ,business.industry ,Superconducting magnet ,Tore Supra ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Phase (combat) ,010305 fluids & plasmas ,law.invention ,Procurement ,Runaway electrons ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Systems engineering ,010306 general physics ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Équipe 107 : Physique des plasmas chauds; International audience; In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
21. Overview of the TCV tokamak program: scientific progress and facility upgrades
- Author
-
S. Mastrostefano, J.-Ph. Hogge, S. Nowak, W. Bin, Bogdan Hnat, Nuno Cruz, S. Allan, T. C. Blanken, Cristian Galperti, H. F. Meyer, M. Faitsch, Stefano Coda, Y. Andrebe, D. Rittich, E. Maljaars, Laust Emil Hjerrild Tophøj, C. Ham, P. Molina Cabrera, Alessandro Pau, Jonathan Graves, D. Douai, C.K. Tsui, H. Weisen, J-M Moret, Marco Gobbin, M. Nocente, David Moulton, Heinz Isliker, F. Sciortino, S. Vartanian, M. Koubiti, P. A. Schneider, V. P. Loschiavo, R. M. McDermott, E. Alessi, I Miron, Yann Camenen, F. Braunmüller, Duccio Testa, T. Odstrcil, J. Juul Rasmussen, J. Horacek, M. Sertoli, G. De Tommasi, Geert Verdoolaege, Patrick Maget, Gustavo Granucci, Timothy P. Robinson, M. Preynas, Cyrille Honoré, Benedikt Geiger, Paolo Innocente, C. Tsironis, A. Jardin, J.A. Boedo, Izaskun Garrido, M. Gospodarczyk, M. G. Dunne, F. Carpanese, M. Kong, Ondrej Ficker, N. Vianello, V. Igochine, P. Zestanakis, V. Pericoli Ridolfini, R. Scannell, T. Lunt, A. Malygin, J. Ahn, M. Bernert, G. Calabrò, Theophilos Pisokas, M. Wischmeier, Piero Martin, Fulvio Militello, B. Lomanowski, Benoit Labit, Giuseppe Gorini, Daniele Carnevale, A. Czarnecka, Faa Federico Felici, F. Saint-Laurent, B. Sieglin, X. Llobet, Patrick Tamain, M. Mavridis, G. Ciraolo, Ambrogio Fasoli, J. Sinha, F. Causa, Ch. Schlatter, J. Decker, Raffaele Albanese, P. Blanchard, F. Bouquey, C. Angioni, G. De Masi, R. McAdams, A. Moro, S. Garavaglia, Hugo Bufferand, Antoine Merle, O. Chellai, Torsten Stange, Laure Vermare, Loukas Vlahos, W. A. J. Vijvers, G. Pautasso, Olivier Février, N. A. Kirneva, H. Reimerdes, Timothy Goodman, Nicolas Fedorczak, Bruce Lipschultz, E. Lazzaro, C. Piron, Z. Huang, J. Kamleitner, James Harrison, Fabio Riva, Lorenzo Frassinetti, Paolo Ricci, Y. R. Martin, Anders Nielsen, B. Esposito, Jonathan Citrin, Antti Hakola, M. Reich, I. T. Chapman, Kevin Verhaegh, C. Marini, H.B. Le, V. Naulin, B. P. Duval, M. Silva, A. Gallo, J. Hawke, A. Krämer-Flecken, D. Hogeweij, N. Krawczyk, Roberto Maurizio, Ivo Furno, Marco Ariola, Christian Theiler, A. N. Karpushov, Jernej Kovacic, M. N. A. Beurskens, A. Uccello, M. Fontana, C. J. Rapson, Tom Wauters, Christian Hopf, C. Ionita Schrittwieser, S. Saarelma, T. Eich, T. Stoltzfus-Dueck, S. Fietz, P. Piovesan, R. Jacquier, D. Choi, H. Anand, Nick Walkden, Gergely Papp, F. Nespoli, D. L. Keeling, B. S. Schneider, Sergio Galeani, G. Ramogida, S. Elmore, E. Giovannozzi, Stefano Alberti, Rémy Nouailletas, O. Kudlacek, R. Guirlet, R. Papřok, Matteo Zuin, T. Bolzonella, F. Crisanti, D. Mazon, U. A. Sheikh, Pascale Hennequin, R. Cesario, A.J. Thornton, S. Costea, P. Buratti, C. Cianfarani, R. Schrittwieser, A. Teplukhina, N.M.T. Vu, Laurie Porte, M. Spolaore, Carlo Sozzi, Minh Quang Tran, M. Maraschek, Olivier Sauter, C. Reux, G. Anastassiou, Ramogida, G., Giovannozzi, E., Esposito, B., Cianfarani, C., Cesario, R., Causa, F., Calabró, G., Buratti, P., Max-Planck-Institut für Plasmaphysik [Garching] (IPP), EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Associazone EURATOM ENEA sulla Fusione, EURATOM, Sygen International Plc, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institute of Plasma Physics, Association Euratom/IPP.CR (IPP PRAGUE), Czech Academy of Sciences [Prague] (CAS), York Plasma Institute (YPI), University of York [York, UK], Association EURATOM-CEA (CEA/DSM/DRFC), Association EURATOM-Risø National Laboratory, Technical University of Denmark [Lyngby] (DTU), Plateforme RX, UFR Chimie, Université Paris Diderot - Paris 7 (UPD7), Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Consiglio Nazionale delle Ricerche [Roma] (CNR), EUROfusion MST1 Team, Coda, S., Ahn, J., Albanese, Raffaele, Alberti, S., Alessi, E., Allan, S., Anand, H., Anastassiou, G., Andrèbe, Y., Angioni, C., Ariola, M., Bernert, M., Beurskens, M., Bin, W., Blanchard, P., Blanken, T. C., Boedo, J. A., Bolzonella, T., Bouquey, F., Braunmüller, F. H., Bufferand, H., Camenen, Y., Carnevale, D., Carpanese, F., Chapman, I. T., Chellai, O., Choi, D., Ciraolo, G., Citrin, J., Costea, S., Crisanti, F., Cruz, N., Czarnecka, A., Decker, J., De Masi, G., DE TOMMASI, Gianmaria, Douai, D., Dunne, M., Duval, B. P., Eich, T., Elmore, S., Faitsch, M., Fasoli, A., Fedorczak, N., Felici, F., Février, O., Ficker, O., Fietz, S., Fontana, M., Frassinetti, L., Furno, I., Galeani, S., Gallo, A., Galperti, C., Garavaglia, S., Garrido, I., Geiger, B., Gobbin, M., Goodman, T. P., Gorini, G., Gospodarczyk, M., Granucci, G., Graves, J. P., Guirlet, R., Hakola, A., Ham, C., Harrison, J., Hawke, J., Hennequin, P., Hnat, B., Hogeweij, D., Hogge, J. P. h., Honoré, C., Hopf, C., Horáček, J., Huang, Z., Igochine, V., Innocente, P., Ionita Schrittwieser, C., Isliker, H., Jacquier, R., Jardin, A., Kamleitner, J., Karpushov, A., Keeling, D. L., Kirneva, N., Kong, M., Koubiti, M., Kovacic, J., Krämer Flecken, A., Krawczyk, N., Kudlacek, O., Labit, B., Lazzaro, E., Le, H. B., Lipschultz, B., Llobet, X., Lomanowski, B., Loschiavo, VINCENZO PAOLO, Lunt, T., Maget, P., Maljaars, E., Malygin, A., Maraschek, M., Marini, C., Martin, P., Martin, Y., Mastrostefano, S., Maurizio, R., Mavridis, M., Mazon, D., Mcadams, R., Mcdermott, R., Merle, A., Meyer, H., Militello, F., Miron, I. G., Molina Cabrera, P. A., Moret, J. M., Moro, A., Moulton, D., Naulin, V., Nespoli, F., Nielsen, A. H., Nocente, M., Nouailletas, R., Nowak, S., Odstrčil, T., Papp, G., Papřok, R., Pau, A., Pautasso, G., Pericoli Ridolfini, V., Piovesan, P., Piron, C., Pisokas, T., Porte, L., Preynas, M., Rapson, C., Juul Rasmussen, J., Reich, M., Reimerdes, H., Reux, C., Ricci, P., Rittich, D., Riva, F., Robinson, T., Saarelma, S., Saint Laurent, F., Sauter, O., Scannell, R., Schlatter, C. h., Schneider, B., Schneider, P., Schrittwieser, R., Sciortino, F., Sertoli, M., Sheikh, U., Sieglin, B., Silva, M., Sinha, J., Sozzi, C., Spolaore, M., Stange, T., Stoltzfus Dueck, T., Tamain, P., Teplukhina, A., Testa, D., Theiler, C., Thornton, A., Tophøj, L., Tran, M. Q., Tsironis, C., Tsui, C., Uccello, A., Vartanian, S., Verdoolaege, G., Verhaegh, K., Vermare, L., Vianello, N., Vijvers, W. A. J., Vlahos, L., Vu, N. M. T., Walkden, N., Wauters, T., Weisen, H., Wischmeier, M., Zestanakis, P., Zuin, M., Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Coda, S, Ahn, J, Albanese, R, Alberti, S, Alessi, E, Allan, S, Anand, H, Anastassiou, G, Andrãbe, Y, Angioni, C, Ariola, M, Bernert, M, Beurskens, M, Bin, W, Blanchard, P, Blanken, T, Boedo, J, Bolzonella, T, Bouquey, F, Braunmã¼ller, F, Bufferand, H, Buratti, P, Calabrã³, G, Camenen, Y, Carnevale, D, Carpanese, F, Causa, F, Cesario, R, Chapman, I, Chellai, O, Choi, D, Cianfarani, C, Ciraolo, G, Citrin, J, Costea, S, Crisanti, F, Cruz, N, Czarnecka, A, Decker, J, De Masi, G, De Tommasi, G, Douai, D, Dunne, M, Duval, B, Eich, T, Elmore, S, Esposito, B, Faitsch, M, Fasoli, A, Fedorczak, N, Felici, F, Fã©vrier, O, Ficker, O, Fietz, S, Fontana, M, Frassinetti, L, Furno, I, Galeani, S, Gallo, A, Galperti, C, Garavaglia, S, Garrido, I, Geiger, B, Giovannozzi, E, Gobbin, M, Goodman, T, Gorini, G, Gospodarczyk, M, Granucci, G, Graves, J, Guirlet, R, Hakola, A, Ham, C, Harrison, J, Hawke, J, Hennequin, P, Hnat, B, Hogeweij, D, Hogge, J, Honorã©, C, Hopf, C, Horã¡ä ek, J, Huang, Z, Igochine, V, Innocente, P, Ionita Schrittwieser, C, Isliker, H, Jacquier, R, Jardin, A, Kamleitner, J, Karpushov, A, Keeling, D, Kirneva, N, Kong, M, Koubiti, M, Kovacic, J, Krämer-Flecken, A, Krawczyk, N, Kudlacek, O, Labit, B, Lazzaro, E, Le, H, Lipschultz, B, Llobet, X, Lomanowski, B, Loschiavo, V, Lunt, T, Maget, P, Maljaars, E, Malygin, A, Maraschek, M, Marini, C, Martin, P, Martin, Y, Mastrostefano, S, Maurizio, R, Mavridis, M, Mazon, D, Mcadams, R, Mcdermott, R, Merle, A, Meyer, H, Militello, F, Miron, I, Molina Cabrera, P, Moret, J, Moro, A, Moulton, D, Naulin, V, Nespoli, F, Nielsen, A, Nocente, M, Nouailletas, R, Nowak, S, Odsträ il, T, Papp, G, PapÅ™ok, R, Pau, A, Pautasso, G, Pericoli Ridolfini, V, Piovesan, P, Piron, C, Pisokas, T, Porte, L, Preynas, M, Ramogida, G, Rapson, C, Juul Rasmussen, J, Reich, M, Reimerdes, H, Reux, C, Ricci, P, Rittich, D, Riva, F, Robinson, T, Saarelma, S, Saint-Laurent, F, Sauter, O, Scannell, R, Schlatter, C, Schneider, B, Schneider, P, Schrittwieser, R, Sciortino, F, Sertoli, M, Sheikh, U, Sieglin, B, Silva, M, Sinha, J, Sozzi, C, Spolaore, M, Stange, T, Stoltzfus-Dueck, T, Tamain, P, Teplukhina, A, Testa, D, Theiler, C, Thornton, A, Tophã¸j, L, Tran, M, Tsironis, C, Tsui, C, Uccello, A, Vartanian, S, Verdoolaege, G, Verhaegh, K, Vermare, L, Vianello, N, Vijvers, W, Vlahos, L, Vu, N, Walkden, N, Wauters, T, Weisen, H, Wischmeier, M, Zestanakis, P, and Zuin, M
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Technology and Engineering ,Nuclear engineering ,Overview ,overview ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Settore ING-INF/04 - Automatica ,law ,Control theory ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,tokamak ,Nuclear and High Energy Physic ,Physics ,Toroid ,Divertor ,Magnetic confinement fusion ,Plasma ,Condensed Matter Physics ,TCV ,TRANSPORT ,Magnetohydrodynamics ,Beam (structure) - Abstract
a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation. © 2017 Ecole Polytechnique Federale de Lausanne., in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions, The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas
22. EXPERIMENTAL INVESTIGATION OF NONLINEAR COUPLING OF LOWER HYBRID WAVES ON TORE SUPRA
- Author
-
D. Voyer, Marc Goniche, V. Petrzilka, Julien Hillairet, A. Ekedahl, Gilles Berger-By, X. Litaudon, B. Frincu, and M. Preynas
- Subjects
Physics ,Nuclear and High Energy Physics ,Nuclear Energy and Engineering ,Mechanical Engineering ,0103 physical sciences ,General Materials Science ,Mechanics ,Tore Supra ,010306 general physics ,01 natural sciences ,Nonlinear coupling ,010305 fluids & plasmas ,Civil and Structural Engineering
23. Special Topic
- Author
-
D. A. Hartmann, Florian Effenberg, H. Hölbe, D.A. Gates, H. P. Laqua, Samuel Lazerson, S. A. Bozhenkov, Hans-Stephan Bosch, Yuriy Turkin, Thomas Sunn Pedersen, M. Preynas, Matthias Otte, Torsten Stange, Oliver Schmitz, R. König, J. Geiger, Y. Feng, M. Endler, Tamara Andreeva, M. W. Jakubowski, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Nuclear and High Energy Physics ,Computer science ,Nuclear engineering ,Divertor ,Phase (waves) ,chemistry.chemical_element ,Topology (electrical circuits) ,Plasma ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,chemistry ,law ,0103 physical sciences ,Limiter ,Wendelstein 7-X ,010306 general physics ,Stellarator ,Helium - Abstract
Wendelstein 7-X (W7-X) is currently under commissioning in preparation for its initial plasma operation phase, operation phase 1.1 (OP1.1). This first phase serves primarily to provide an integral commissioning of all major systems needed for plasma operation, as well as systems, such as diagnostics, that need plasma operation to verify their foreseen functions. In OP1.1, W7-X will have a reduced set of in-vessel components. In particular, five graphite limiter stripes replace the later foreseen divertor. This paper describes the expected machine capabilities in OP1.1, as well as a selection of physics topics that can be addressed in OP1.1, despite the simplified configuration and the reduced machine capabilities. Physics topics include the verification and adjustment of the magnetic topology, the testing of the foreseen plasma start-up scenarios and the feed-forward control of plasma density and temperature evolution, as well as more advanced topics such as scrape-off layer (SOL) studies at short connection lengths and transport studies. Plasma operation in OP1.1 will primarily be performed in helium, with a hydrogen plasma phase at the end.
- Full Text
- View/download PDF
24. Experimental characterization of plasma start-up using ECRH in preparation of W7-X operation
- Author
-
Shinichiro Kado, Y. Yoshimura, Hiroe Igami, H. P. Laqua, S. Kubo, Matthias Otte, M. Preynas, Kazunobu Nagasaki, Takashi Shimozuma, Shinji Kobayashi, D. Aßmus, Takashi Mutoh, and Torsten Stange
- Subjects
Electron density ,Chemistry ,Physics ,QC1-999 ,Plasma ,7. Clean energy ,Electron cyclotron resonance ,law.invention ,Magnetic field ,Characterization (materials science) ,Power (physics) ,law ,Harmonic ,Atomic physics ,Stellarator - Abstract
The upcoming operation of Wendelstein 7-X (W7-X) will be supported by an Electron Cyclotron Resonance Heating (ECRH) system working at 140 GHz in second harmonic at the nominal magnetic field of 2.5T. Because the optimization of the plasma breakdown is crucial to ensure a successful plasma build-up, dedicated plasma start-up experiments were performed on three stellarator/heliotron devices: Heliotron J, LHD and WEGA. Start-up behavior and dependencies on ECRH injected power, neutral gas pressure and rotational transform were obtained in X2 heating. Plasma start-up delay time decreases with the increase in ECRH input power. However, this behavior saturates when low pre-fill neutral gas pressure conditions are met. Both the delay time and the electron density are an increasing function of the gas pressure. On Heliotron J and WEGA devices, the higher the rotational transform is, the faster the start-up and the higher the plasma density are. Analysis of the temporal evolution of the plasma start-up shows that plasma start-up on stellarators is a two- step process. In addition, off-axis heating experiments are characterized by a longer plasma start-up duration compared to on-axis heating discharges. Third harmonic in X-mode has been attempted on LHD for different neutral gas puffing settings but no plasma breakdown was achieved. This multi-machine study was useful to define ECRH start-up scenarios for W7-X.
- Full Text
- View/download PDF
25. First results from protective ECRH diagnostics for Wendelstein 7-X
- Author
-
H. P. Laqua, V. Moncada, Dmitry Moseev, M. Preynas, Torsten Stange, S. Marsen, Yann Corre, Holger Niemann, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Nuclear and High Energy Physics ,Materials science ,business.industry ,Bolometer ,Cyclotron resonance ,Condensed Matter Physics ,01 natural sciences ,Electron cyclotron resonance ,010305 fluids & plasmas ,law.invention ,Heating system ,Optics ,law ,0103 physical sciences ,Wendelstein 7-X ,010306 general physics ,Interlock ,business ,Stellarator ,Microwave - Abstract
Wendelstein 7-X (W7-X) is a steady state capable optimised stellarator. The main heating system is electron cyclotron resonance heating (ECRH) operating at 140 GHz providing up to 9 MW microwave power. The power is launched into the machine by front steerable quasi-optical launchers in X- or O-mode. While in X-mode the first pass absorption is 99%, it is only 40... 70% in O-mode. O2-mode heating is forseen for high density operation above the X2 cutoff density of m−3. A set of diagnostics has been developed to protect the machine from non absorbed ECRH power which can easily damage in vessel components. The non absorbed power hitting the inner wall is measured by waveguides embedded in the first wall (ECA diagnostic). In order to prevent the inner wall from overheating or arcing, a near-infra red sensitive video diagnostic with a dynamic range of 450...1200 °C was integrated in the ECRH launchers. Thermal calculations for the carbon tiles predict a temperature increase above the detection threshold for scenarios of plasma start-up failure or poor absorption on a time scale of 50 ms. However, the temperature increase measured by an IR camera in experiments with failed break down, i.e. no ECRH absorption for up to 50 ms, was only C. In discharges with 5% transmission the measured temperature increase was comparable. The stray radiation level inside the machine is measured by so called sniffer probes resembling microwave diode detectors which were designed to collect all radiation approaching the probing surface independent of incident angle and polarization. Five sniffer probes are installed at different toroidal positions. They were integrated in the ECRH interlock system. During the first operational phase of W7-X this was the only available plasma interlock system. The signal quality proofed to be high enough for a reliable termination in case of poor absorption. After a breakdown phase of 10 ms, the sniffer probe signals dropped by more than an order of magnitude. Especially in the very first days of operation, most discharges died by a radiative collapse due to impurity influx. In this case the heating power was reliably switched off due to the increased level of stray radiation. Moreover, ECRH bolometers with a slower response time in the launcher ports and an empty diagnostic port were used to estimate the stray radiation level in the ports. In the launcher ports it could be shown that the stray radiation could lead to an overheating of the bellows in long discharges. Possible counter measures are discussed.
- Full Text
- View/download PDF
26. First results from protective ECRH diagnostics for Wendelstein 7-X.
- Author
-
S. Marsen, Y. Corre, H.P. Laqua, V. Moncada, D. Moseev, H. Niemann, M. Preynas, T. Stange, and Team, The W7-X
- Subjects
ELECTRON cyclotron resonance sources ,STELLARATORS ,TOROIDAL plasma ,ABSORPTION ,RADIATION - Abstract
Wendelstein 7-X (W7-X) is a steady state capable optimised stellarator. The main heating system is electron cyclotron resonance heating (ECRH) operating at 140 GHz providing up to 9 MW microwave power. The power is launched into the machine by front steerable quasi-optical launchers in X- or O-mode. While in X-mode the first pass absorption is 99%, it is only 40... 70% in O-mode. O2-mode heating is forseen for high density operation above the X2 cutoff density of m
−3 . A set of diagnostics has been developed to protect the machine from non absorbed ECRH power which can easily damage in vessel components. The non absorbed power hitting the inner wall is measured by waveguides embedded in the first wall (ECA diagnostic). In order to prevent the inner wall from overheating or arcing, a near-infra red sensitive video diagnostic with a dynamic range of 450...1200 °C was integrated in the ECRH launchers. Thermal calculations for the carbon tiles predict a temperature increase above the detection threshold for scenarios of plasma start-up failure or poor absorption on a time scale of 50 ms. However, the temperature increase measured by an IR camera in experiments with failed break down, i.e. no ECRH absorption for up to 50 ms, was only C. In discharges with 5% transmission the measured temperature increase was comparable. The stray radiation level inside the machine is measured by so called sniffer probes resembling microwave diode detectors which were designed to collect all radiation approaching the probing surface independent of incident angle and polarization. Five sniffer probes are installed at different toroidal positions. They were integrated in the ECRH interlock system. During the first operational phase of W7-X this was the only available plasma interlock system. The signal quality proofed to be high enough for a reliable termination in case of poor absorption. After a breakdown phase of 10 ms, the sniffer probe signals dropped by more than an order of magnitude. Especially in the very first days of operation, most discharges died by a radiative collapse due to impurity influx. In this case the heating power was reliably switched off due to the increased level of stray radiation. Moreover, ECRH bolometers with a slower response time in the launcher ports and an empty diagnostic port were used to estimate the stray radiation level in the ports. In the launcher ports it could be shown that the stray radiation could lead to an overheating of the bellows in long discharges. Possible counter measures are discussed. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
27. Plans for the first plasma operation of Wendelstein 7-X.
- Author
-
T. Sunn Pedersen, T. Andreeva, H.-S. Bosch, S. Bozhenkov, F. Effenberg, M. Endler, Y. Feng, D.A. Gates, J. Geiger, D. Hartmann, H. Hölbe, M. Jakubowski, R. König, H.P. Laqua, S. Lazerson, M. Otte, M. Preynas, O. Schmitz, T. Stange, and Y. Turkin
- Subjects
PLASMA physics ,STELLARATORS ,PLASMA confinement devices ,FUSION reactor limiters ,FUSION reactor materials - Abstract
Wendelstein 7-X (W7-X) is currently under commissioning in preparation for its initial plasma operation phase, operation phase 1.1 (OP1.1). This first phase serves primarily to provide an integral commissioning of all major systems needed for plasma operation, as well as systems, such as diagnostics, that need plasma operation to verify their foreseen functions. In OP1.1, W7-X will have a reduced set of in-vessel components. In particular, five graphite limiter stripes replace the later foreseen divertor. This paper describes the expected machine capabilities in OP1.1, as well as a selection of physics topics that can be addressed in OP1.1, despite the simplified configuration and the reduced machine capabilities. Physics topics include the verification and adjustment of the magnetic topology, the testing of the foreseen plasma start-up scenarios and the feed-forward control of plasma density and temperature evolution, as well as more advanced topics such as scrape-off layer (SOL) studies at short connection lengths and transport studies. Plasma operation in OP1.1 will primarily be performed in helium, with a hydrogen plasma phase at the end. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
28. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator.
- Author
-
Preynas M, Laqua HP, Marsen S, Reintrog A, Corre Y, Moncada V, and Travere JM
- Abstract
The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.