1. Final Moments. II. Observational Properties and Physical Modeling of Circumstellar-material-interacting Type II Supernovae
- Author
-
W. V. Jacobson-Galán, L. Dessart, K. W. Davis, C. D. Kilpatrick, R. Margutti, R. J. Foley, R. Chornock, G. Terreran, D. Hiramatsu, M. Newsome, E. Padilla Gonzalez, C. Pellegrino, D. A. Howell, A. V. Filippenko, J. P. Anderson, C. R. Angus, K. Auchettl, K. A. Bostroem, T. G. Brink, R. Cartier, D. A. Coulter, T. de Boer, M. R. Drout, N. Earl, K. Ertini, J. R. Farah, D. Farias, C. Gall, H. Gao, M. A. Gerlach, F. Guo, A. Haynie, G. Hosseinzadeh, A. L. Ibik, S. W. Jha, D. O. Jones, D. Langeroodi, N LeBaron, E. A. Magnier, A. L. Piro, S. I. Raimundo, A. Rest, S. Rest, R. Michael Rich, C. Rojas-Bravo, H. Sears, K. Taggart, V. A. Villar, R. J. Wainscoat, X-F. Wang, A. R. Wasserman, S. Yan, Y. Yang, J. Zhang, and W. Zheng
- Subjects
Type II supernovae ,Shocks ,Circumstellar gas ,Ultraviolet astronomy ,Astrophysics ,QB460-466 - Abstract
We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time ( δ t < 2 days) spectra show transient, narrow emission lines from shock ionization of confined ( r < 10 ^15 cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of H i , He i/ii , C iv , and N iii/iv/v from the CSM persist on a characteristic timescale ( t _IIn ) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and both t _IIn and the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times, t _IIn , and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: ${t}_{\mathrm{IIn}}\approx 3.8[\dot{M}/$ (0.01 M _⊙ yr ^−1 )] days.
- Published
- 2024
- Full Text
- View/download PDF