13 results on '"M. Laspalas"'
Search Results
2. Vol4 num4-8 FE Mechanical properties prediction of CFRP considering different carbon fiber surface treatments
- Author
-
C. Valero, M. Laspalas, F. Serrano, C. Sáenz, and A. Chiminelli
- Subjects
Materials Science, Composites - Abstract
Reinforcement/matrix interaction is recognized as a key issue in polymeric composite materials. From the mechanical point of view, being the link between the fibres and the polymer, a proper load transfer is ensured only if a good enough interphase exists. This is particularly critical in carbon fibre (CF) composites since, due to the non-polar characteristics and chemical inertness of carbon, sometimes they exhibit weak interfacial adhesion. In this sense, various surface treatments for CFs are currently being investigated, in order to improve their interaction with the polymeric matrices: wet chemical or electrochemical methods, chemically or physically activated oxidation procedures, application of thin coatings and plasma treatments. This is precisely one of the challenges addressed in the MODCOMP project. This paper describes part of the work carried out within the mentioned project in order to estimate the improvement of properties that can be achieved through enhancements of the CF/epoxy interphases. The study covers both elastic engineering constants and strengths predictions, and it has been performed using finite element models of RVEs of UD fibres and introducing cohesive elements to take into account the interfacial failure mode. The results obtained allow identifying which range of CF/epoxy interphase properties enhancement should be achieved in order to get significant effects in the composites mechanical response.
- Published
- 2022
3. Modelling and predictive control for a RTM mold
- Author
-
M. Escolano, I. Conde, M. Laspalas, M. Lizaranzu, J. Rodríguez, J. Alfonso, J. Orús, A. Chiminelli, J. Aja, and F. Escalera
- Published
- 2022
- Full Text
- View/download PDF
4. Application of functionally graded adhesives in aluminium-composite joints
- Author
-
A. Chiminelli, R. Breto, M. Lizaranzu, E. Duvivier, M. Laspalas, and S. Lafuente
- Published
- 2022
- Full Text
- View/download PDF
5. Simulation strategy to compensate spring-in deformations in aeronautical panel made by liquid resin infusion
- Author
-
M. Laspalas, I. Conde, A. Chiminelli, M. Lizaranzu, and F. Escalera
- Published
- 2022
- Full Text
- View/download PDF
6. Experimental characterisation of textile compaction response: A benchmark exercise
- Author
-
Suresh G. Advani, Stepan Vladimirovitch Lomov, P. Causse, Jörg Dittmann, C. López, S. van Oosterom, Mario Danzi, Pascal Hubert, D. Large, A. Keller, Andrew C. Long, Jihui Wang, Viktor Grishaev, Véronique Michaud, Kunal Masania, A. Chiminelli, Pedro Sousa, Sergey G. Abaimov, Peter Mitschang, N. Sharp, Andrew George, David C. Berg, Murad Ali, Thomas R. Allen, M. Lizaranzu, François Trochu, J. Valette, Baris Caglar, Oleg V. Lebedev, Dilmurat Abliz, Simon Bickerton, R. Schubnel, R. Graupner, Samir Allaoui, Jean Gillibert, K. Kind, Peter Middendorf, Iskander Akhatov, Paolo Ermanni, Quentin Govignon, S. Comas-Cardona, Rehan Umer, Ewald Fauster, A. Aktas, A. Guilloux, David May, Clemens Dransfeld, Andreas Endruweit, A.X.H. Yong, M.A. Kabachi, M. Laspalas, Publica, National Physical Laboratory, Institut für Verbundwerkstoffe GmbH, University of Nottingham, UK (UON), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), University of Delaware [Newark], McGill University = Université McGill [Montréal, Canada], Technische Universität Clausthal (TU Clausthal), Khalifa University of Science and Technology, Institut de Thermique, Mécanique, Matériaux (ITheMM), Université de Reims Champagne-Ardenne (URCA), University of Auckland [Auckland], Ecole Polytechnique Fédérale de Lausanne (EPFL), École Polytechnique de Montréal (EPM), ITAINNOVA, Université de Nantes (UN), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Universität Stuttgart [Stuttgart], University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Montanuniversität Leoben (MUL), Brigham Young University (BYU), Laboratoire de Mécanique Gabriel Lamé (LaMé), Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut Clément Ader (ICA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Fraunhofer IGCV, TENSYL, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Institut de Soudure Groupe, Purdue University [West Lafayette], Wuhan University of Science and Technology, Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT), Université d'Orléans (UO)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi)
- Subjects
Materials science ,Compressibility ,Glass fiber ,Compaction ,Fabric/textiles ,Mechanical testing ,02 engineering and technology ,Test method ,Fixture ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Stress (mechanics) ,Mechanics of Materials ,Woven fabric ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Ceramics and Composites ,Sensitivity (control systems) ,Composite material ,0210 nano-technology - Abstract
International audience; This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A glass fibre 2/2 twill weave and a biaxial (±45°) glass fibre non-crimp fabric (NCF) were tested in dry and wet conditions. All participants used the same testing procedure but were allowed to use the testing frame, the fixture and sample geometry of their choice. The results showed a large scatter in the maximum compaction stress between participants at the given target thickness, with coefficients of variation ranging from 38 % to 58 %. Statistical analysis of data indicated that wetting of the specimen significantly affected the scatter in results for the woven fabric, but not for the NCF. This is related to the fibre mobility in the architectures in both fabrics. As isolating the effect of other test parameters on the results was not possible, no statistically significant effect of other test parameters could be proven. The high sensitivity of the recorded compaction pressure near the minimum specimen thickness to changes in specimen thickness suggests that small uncertainties in thickness can result in large variations in the maximum value of the compaction stress. Hence, it is suspected that the thickness measurement technique used may have an effect on the scatter.
- Published
- 2021
- Full Text
- View/download PDF
7. In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise
- Author
-
A.X.H. Yong, E.M. Sozer, Andrew George, Baris Caglar, A. Aktas, N. Sharp, A. Chiminelli, Pedro Sousa, H. Caglar, Sergey G. Abaimov, Ralf Schledjewski, J. Thomas, Thomas R. Allen, J. Raynal, Iskander Akhatov, Oleg V. Lebedev, Juan Ignacio Moran, M. Deléglise-Lagardère, Monica Francesca Pucci, M. Laspalas, Gerhard Ziegmann, Dilmurat Abliz, Andreas Endruweit, Ali, Peter Mitschang, Andrew C. Long, Nuno Correia, Masoud Bodaghi, David C. Berg, R. Schubnel, M. Lizaranzu, W. Wijaya, Pierre-Jacques Liotier, G. Sims, Chung Hae Park, Benoît Cosson, Björn Willenbacher, Paolo Ermanni, Swen Zaremba, Viktor Grishaev, Gaston Martin Francucci, Mario Danzi, Suresh G. Advani, Stepan Vladimirovitch Lomov, Jörg Dittmann, Kabachi, M. Hancioglu, Peter Middendorf, K. Kind, Rehan Umer, R.B. Pipes, Ewald Fauster, David May, Simon Bickerton, Exequiel Santos Rodriguez, Department of Metallurgy and Materials Engineering, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), University of Nottingham, UK (UON), National Research Council of Canada (NRC), Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS), Centre des Matériaux des Mines d'Alès (C2MA), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Service de Physique Théorique (SPhT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Universidade de Aveiro, Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Économie, des Finances et de l'Industrie [Paris, France], and Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne (ENISE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Textile ,Materials science ,Coefficient of variation ,Fabrics/textiles ,RESIN FLOW ,INGENIERÍAS Y TECNOLOGÍAS ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Permeability ,Viscosity measurement ,Liquid composite molding ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Ingeniería de los Materiales ,Woven fabric ,PERMEABILITY ,Composite material ,LIQUID COMPOSITE MOLDING ,business.industry ,System of measurement ,PROCESS MONITORING ,Compuestos ,021001 nanoscience & nanotechnology ,Resin flow ,0104 chemical sciences ,Permeability (earth sciences) ,In plane ,purl.org/becyt/ford/2 [https] ,Mechanics of Materials ,Process monitoring ,Ceramics and Composites ,Radial flow ,purl.org/becyt/ford/2.5 [https] ,0210 nano-technology ,business ,FABRICS/TEXTILES - Abstract
Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated injection method. 19 participants using 20 systems characterized a non-crimp and a woven fabric at three different fiber volume contents, using a commercially available silicone oil as impregnating fluid. They followed a detailed characterization procedure and also completed a questionnaire on their set-up and analysis methods. Excluding outliers (2 of 20), the average coefficient of variation (c v ) between the participant´s results was 32% and 44% (non-crimp and woven fabric), while the average c v for individual participants was 8% and 12%, respectively. This indicates statistically significant variations between the measurement systems. Cavity deformation was identified as a major influence, besides fluid pressure/viscosity measurement, textile variations, and data analysis. Fil: May, D.. Institut Für Verbundwerkstoffe Gmbh; Alemania Fil: Aktas, A.. National Physical Laboratory; Reino Unido Fil: Advani, S.G.. University Of Delaware; Estados Unidos Fil: Berg, D. C.. Technische Universität Clausthal; Alemania Fil: Endruweit, A.. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Fauster, E.. Montanuniversitat Leoben; Austria Fil: Lomov, S. V.. Katholikie Universiteit Leuven; Bélgica Fil: Long, A.. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Mitschang, P.. Institut Für Verbundwerkstoffe Gmbh; Alemania Fil: Abaimov, S.. Skolkovo Institute Of Science And Technology; Rusia Fil: Abliz, D.. Technische Universität Clausthal; Alemania Fil: Akhatov, I.. Skolkovo Institute Of Science And Technology; Rusia Fil: Ali, M. A.. Khalifa University Of Science And Technology; Emiratos Arabes Unidos Fil: Allen, T. D.. University of Auckland; Nueva Zelanda Fil: Bickerton, S.. University of Auckland; Nueva Zelanda Fil: Bodaghi, M.. Institute Of Science And Innovation In Mechanical And Industrial; Portugal Fil: Caglar, B.. Koç Üniversitesi; Turquía Fil: Caglar, H.. Koç Üniversitesi; Turquía Fil: Chiminelli, A.. Instituto Tecnologico de Aragon; España Fil: Correia, N.. Institute Of Science And Innovation In Mechanical And Industrial; Portugal Fil: Cosson, B.. Imt Lille Douai; Francia Fil: Danzi, M.. Eth Zürich; Suiza Fil: Dittmann, J.. Universität Stuttgart; Alemania Fil: Ermanni, P.. Eth Zürich; Suiza Fil: Francucci, Gaston Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: George, A.. University Brigham Young; Estados Unidos Fil: Grishaev, V.. Skolkovo Institute Of Science And Technology; Rusia Fil: Hancioglu, M.. Koç Üniversitesi; Turquía Fil: Kabachi, M. A.. Eth Zürich; Suiza Fil: Kind, K.. Universitat Technical Zu Munich; Alemania Fil: Deléglise Lagardère, M.. Imt Lille Douai; Francia Fil: Laspalas, M.. Instituto Tecnologico de Aragon; España Fil: Lebedev, O. V.. Skolkovo Institute Of Science And Technology; Rusia Fil: Lizaranzu, M.. Instituto Tecnologico de Aragon; España Fil: Liotier, P. J.. Université de Lyon; Francia Fil: Middendorf, P.. Universität Stuttgart; Alemania Fil: Morán, J.. Universidad Nacional de Mar del Plata; Argentina Fil: Park, C. H.. Imt Lille Douai; Francia Fil: Pipes, R. B.. Purdue University; Estados Unidos Fil: Pucci, M. F.. Université de Montpellier; Austria Fil: Raynal, J.. Groupe Institut de Soudure; Francia Fil: Rodriguez, E. S.. Universidad Nacional de Mar del Plata; Argentina Fil: Schledjewski, R.. Montanuniversitat Leoben; Austria Fil: Schubnel, R.. Groupe Institut de Soudure; Francia Fil: Sharp, N.. Purdue University; Estados Unidos Fil: Sims, G.. National Physical Laboratory; Reino Unido Fil: Sozer, E. M.. Koç Üniversitesi; Turquía Fil: Sousa, P.. Katholikie Universiteit Leuven; Bélgica Fil: Thomas, J.. Khalifa University Of Science And Technology; Emiratos Arabes Unidos Fil: Umer, R.. Khalifa University Of Science And Technology; Emiratos Arabes Unidos Fil: Wijaya, W.. University of Auckland; Nueva Zelanda Fil: Willenbacher, B.. Institut Für Verbundwerkstoffe Gmbh; Alemania Fil: Yong, A.. National Physical Laboratory; Reino Unido Fil: Zaremba, S.. Universitat Technical Zu Munich; Alemania Fil: Ziegmann, G.. Technische Universität Clausthal; Alemania
- Published
- 2019
- Full Text
- View/download PDF
8. Application of micromechanical models for elasticity and failure to short fibre reinforced composites. Numerical implementation and experimental validation
- Author
-
Miguel A. Jiménez, M. Laspalas, B. García, C. Crespo, and J. L. Pelegay
- Subjects
Materials science ,Mechanical Engineering ,Isotropy ,Micromechanics ,Stiffness ,Fibre-reinforced plastic ,Strength of materials ,Finite element method ,Computer Science Applications ,Modeling and Simulation ,Ultimate tensile strength ,medicine ,General Materials Science ,Injection moulding ,Composite material ,medicine.symptom ,Civil and Structural Engineering - Abstract
This paper deals with numerical modelling of the mechanical behaviour of short fibre reinforced plastic composites manufactured by the injection moulding process. First of all, an experimental program has been carried out in which the local fibre orientation distribution has been measured in an 80x80x2mm injected plate by means of polished cut sections, analysed with SEM and image processing software. Tensile and three-point bending tests have been performed to obtain the elastic and strength response of the material in different locations along the plate and at two directions (parallel and normal to the flow direction). Analytical micromechanical models and averaging procedures have been implemented to relate the local fibre orientation distribution with the effective local anisotropic response of the material (elastic and strength). The models are validated by means of the finite element simulation of the performed characterisation tests. Finally, the methodology is applied to an injection moulded component with complex geometry. Fibre orientation data predicted with mould-flow software has been used to determine the local effective elastic stiffness and strength coefficients. A FE simulation of the functional behaviour of the component has been carried out. Results indicate that the proposed variable stiffness/strength anisotropic model predicts a lower load for onset of failure than when applying an equivalent isotropic material model.
- Published
- 2008
- Full Text
- View/download PDF
9. Consideration of fibre orientation in a micromechanical model for strain hardening cement composite
- Author
-
M Laspalas, I Mariner, M Jiménez, and I Viejo
- Subjects
Cement ,Materials science ,Composite number ,Orientation (graph theory) ,Strain hardening exponent ,Composite material ,Micromechanical model - Published
- 2014
- Full Text
- View/download PDF
10. Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise
- Author
-
A. Aktas, T. Herman, Véronique Michaud, H. Caglar, A. Chiminelli, K. Kind, Suresh G. Advani, P. Causse, Jörg Dittmann, M.A. Kabachi, M. Hancioglu, Andrew C. Long, Sergey G. Abaimov, Damiano Salvatori, Peter Middendorf, David May, S. Comas-Cardona, Pascal Hubert, M. Sozer, Björn Willenbacher, David C. Berg, Oleg V. Lebedev, Jihui Wang, Iskander Akhatov, Dilmurat Abliz, Andrew George, Simon Bickerton, J.A. Garcia-Manrique, Amaël Cohades, M. Lizaranzu, R. Graupner, R. Schubnel, N. Sharp, Andreas Endruweit, Baris Caglar, Thomas R. Allen, Walid Harizi, Clemens Dransfeld, A. Guilloux, A.X.H. Yong, Rehan Umer, A. Keller, Ewald Fauster, Wei Huang, François Trochu, J. Valette, D. Brütsch, Kunal Masania, Christian Brauner, M. Laspalas, Murad Ali, Viktor Grishaev, J. Thomas, Mario Danzi, Paolo Ermanni, National Physical Laboratory, Institut für Verbundwerkstoffe GmbH, University of Nottingham, UK (UON), University of Delaware [Newark], Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Technische Universität Clausthal (TU Clausthal), Khalifa University of Science and Technology, Roberval (Roberval), Université de Technologie de Compiègne (UTC), and Publica
- Subjects
Materials science ,Glass fiber ,02 engineering and technology ,Test method ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,010402 general chemistry ,021001 nanoscience & nanotechnology ,16. Peace & justice ,01 natural sciences ,Silicone oil ,[SPI.MAT]Engineering Sciences [physics]/Materials ,0104 chemical sciences ,chemistry.chemical_compound ,Permeability (earth sciences) ,chemistry ,Volume (thermodynamics) ,Mechanics of Materials ,Volume fraction ,Ceramics and Composites ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Composite material ,0210 nano-technology ,Reinforcement ,ComputingMilieux_MISCELLANEOUS ,Order of magnitude - Abstract
The out-of-plane permeability of two glass fibre fabrics was measured by 26 institutions using silicone oil as a test fluid. Participants in this study were free to select the test procedure, specimen dimensions and data analysis method, provided that testing was carried out at three target fibre volume fractions, 46 %, 50 % and 54 %. While results showed a variability of two orders of magnitude between participants, most values were within a significantly narrower band. A majority of participants used 1D saturated test method. A few selected 1D unsaturated and 3D unsaturated flow method which gave very similar results. Focusing on analysis of data and results of 1D saturated flow measurements, results are not conclusive, but they are consistent with number of layers in a specimen, fibre volume fraction, injection pressure and sealing of specimen edges all having an effect on the measured permeability. Specifying limits for these parameters is expected to result in reduced scatter in measured permeability., Composites Part A: Applied Science and Manufacturing, 148, ISSN:1359-835X, ISSN:1878-5840
- Full Text
- View/download PDF
11. Atomistic to Mesoscopic Modelling of Thermophysical Properties of Graphene-Reinforced Epoxy Nanocomposites.
- Author
-
Muhammad A, Sáenz Ezquerro C, Srivastava R, Asinari P, Laspalas M, Chiminelli A, and Fasano M
- Abstract
This research addresses the need for a multiscale model for the determination of the thermophysical properties of nanofiller-enhanced thermoset polymer composites. Specifically, we analyzed the thermophysical properties of an epoxy resin containing bisphenol-A diglyceryl ether (DGEBA) as an epoxy monomer and dicyandiamide (DICY) and diethylene triamine (DETA) as cross-linking agents. The cross-linking process occurs at the atomistic scale through the formation of bonds among the reactive particles within the epoxy and hardener molecules. To derive the interatomic coarse-grained potential for the mesoscopic model and match the density of the material studied through atomic simulations, we employed the iterative Boltzmann inversion method. The newly developed coarse-grained molecular dynamics model effectively reproduces various thermophysical properties of the DGEBA-DICY-DETA resin system. Furthermore, we simulated nanocomposites made of the considered epoxy additivated with graphene nanofillers at the mesoscopic level and verified them against continuum approaches. Our results demonstrate that a moderate amount of nanofillers (up to 2 wt.%) increases the elastic modulus and thermal conductivity of the epoxy resin while decreasing the Poisson's ratio. For the first time, we present a coarse-grained model of DGEBA-DICY-DETA/graphene materials, which can facilitate the design and development of composites with tunable thermophysical properties for a potentially wide range of applications, e.g., automotive, aerospace, biomedical, or energy ones.
- Published
- 2023
- Full Text
- View/download PDF
12. Prediction of the structure and mechanical properties of polycaprolactone-silica nanocomposites and the interphase region by molecular dynamics simulations: the effect of PEGylation.
- Author
-
Ezquerro CS, Aznar JMG, and Laspalas M
- Subjects
- Interphase, Molecular Dynamics Simulation, Polyesters, Polyethylene Glycols, Polymers chemistry, Nanocomposites chemistry, Silicon Dioxide chemistry
- Abstract
Polymer/silica (PS) nanocomposites are, among numerous combinations of inorganic/organic nanocomposites, one of the most important materials reported in the literature and have been employed in a wide variety of applications. Due to this great interest in the scientific and industry community, knowledge about their physiochemistry allows for a better understanding of their development and improvement. One area of interest found in biopolymers is silica, where silica nanoparticles can be used to increase their mechanical properties and give them higher opportunities to replace synthetic plastics. With this aim in mind, molecular dynamics (MD) simulations were used to predict the structure and mechanical properties of the interphase region and nanocomposite systems of polycaprolactone (PCL), a common poly(hydroxy acid) type biopolymer, reinforced with silica nanoparticles. Two types of nanoparticles were studied to assess the effect of PEGylation: hydroxyl (ungrafted) and polyethylene glycol (PEG) (grafted or PEGylated) functionalized silica. The interaction energy between the nanoparticle and the polymeric matrix was determined, showing an increase of the affinity between each component due to the PEGylation of the nanoparticle. Through the analysis of polymer density profiles, the structure and thickness of the interphase region were determined, and it was observed that PEGylation increased the interphase thickness from 10.80 Å to 13.04 Å while it decreased the peak and average polymer density of the interphase region. Using compressed and expanded molecular models of the neat PCL polymer, the mechanical properties of the interphase region were related to its density through an interpolation model, and mechanical property profiles were obtained, from which the average values of the Young's modulus, Poisson's ratio and shear modulus of the interphase region were calculated. Finally, the mechanical properties of the nanocomposites were determined by molecular mechanics simulations, showing that the silica nanoparticles increased the stiffness of the composite system to about 7-8% with respect to that of the neat polymer, having a 2.09% weight of bare silica or 2.82% weight of PEGylated silica. PEGylation did not show an additional effect on the overall mechanical properties. A mean field micromechanics model (Mori-Tanaka) corroborated the properties calculated for the interphase region using MD simulations. It was concluded that the PEGylation of the nanoparticle improved the affinity, and thus the dispersion, of the silica nanoparticles towards the PCL matrix, but with no further increase in the mechanical properties of the composite.
- Published
- 2022
- Full Text
- View/download PDF
13. Effects of Graphene Oxidation on Interaction Energy and Interfacial Thermal Conductivity of Polymer Nanocomposite: A Molecular Dynamics Approach.
- Author
-
Bellussi FM, Sáenz Ezquerro C, Laspalas M, and Chiminelli A
- Abstract
Interfacial characteristics of polymer nanocomposites represent a crucial aspect to understand their global properties and to evaluate the interaction between nanofillers and matrix. In this work we used a molecular dynamics (MD) approach to characterize the interfacial region at the atomistic scale of graphene-based polymer nanocomposites. Three different polymer matrixes were considered, polylactic acid (PLA), polypropylene (PP) and epoxy resin (EPO), which were reinforced with three types of graphene fillers: pristine graphene (G), graphene oxide (GO) and reduced graphene oxide (rGO). In particular, the compatibility of the nanofillers in polymer matrixes were evaluated in terms of the interaction energy, while the interfacial thermal resistance (Kapitza resistance) between matrices and fillers was calculated with a nonequilibrium molecular dynamics (NEMD) method. Results showed that the oxidation degree plays an important role on the studied properties of the interfacial region. In particular, it was observed that the Kapitza resistance is decreased in the oxidized graphene (GO and rGO), while interaction energy depended on the polarity of the polymer matrix molecules and the contribution of the Coulombic component.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.