Wei Peng, V. Balédent, S. Chattopadhyay, Marie-Bernadette Lepetit, Françoise Damay, G. Yahia, M. J. Whitaker, Pascale Foury-Leylekian, Martha Greenblatt, E. Elkaim, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers), Théorie de la Matière Condensée (TMC ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de la matière Condensée [Tunis] (LPMC), Université de Tunis El Manar (UTM)-Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis (FST), Université de Tunis El Manar (UTM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Théorie de la Matière Condensée (NEEL - TMC), and Institut Laue-Langevin (ILL)
The magnetoelectric coupling, a phenomenon inducing magnetic (electric) polarization by application of an external electric (magnetic) field and first conjectured by Curie in 1894, is observed in most of the multiferroics and used for many applications in various fields such as data storage or sensing. However, its microscopic origin is a long-standing controversy in the scientific community. An intense revival of interest developed in the beginning of the 21st century due to the emergence of multiferroic frustrated magnets in which the ferroelectricity is magnetically induced and which present an inherent strong magnetoelectric coupling. The Dzyaloshinskii-Moriya interaction (DMI) well accounts for such ferroelectricity in systems with a noncollinear magnetic order such as the ${\mathrm{RMnO}}_{3}$ manganites. The DMI effect is, however, inadequate for systems presenting ferroelectricity induced by quasicollinear spin arrangements such as the prominent ${\mathrm{RMn}}_{2}{\mathrm{O}}_{5}$ manganites. Among different microscopic mechanisms proposed to resolve this incompatibility, the exchange-striction model stands as the most invoked candidate. In this scenario, the polar atomic displacements originate from the release of a frustration caused by the magnetic order. Despite its theoretical description 15 years ago, this mechanism had yet to be unambiguously validated experimentally. The breakthrough finally comes from ${\mathrm{SmMn}}_{2}{\mathrm{O}}_{5}$ presenting a unique magnetic order revealed by powder neutron diffraction. The unique orientation of its magnetic moment establishes the missing element that definitely validates the exchange striction as the effective mechanism for the spin-induced ferroelectricity in this series. More generally, this is a proof of concept that validates this model on actual systems, facilitating the development of a new generation of multiferroics with unrivaled magnetoelectric properties.