1. Selectivity of Sol-Gel and Hydrothermal TiO2 Nanoparticles towards Photocatalytic Degradation of Cationic and Anionic Dyes
- Author
-
Md. Torikul Islam, Md. Nahid Parvez Roni, Md. Yunus Ali, Md. Robiul Islam, Md. Shamim Hossan, M. Habibur Rahman, A. A. S. Mostofa Zahid, Md. Nur E Alam, Md. Abu Hanif, and M. Shaheer Akhtar
- Subjects
titanium dioxide ,photocatalyst ,sol-gel ,hydrothermal ,methylene blue ,methyl orange ,Organic chemistry ,QD241-441 - Abstract
Titanium dioxide (TiO2) nanoparticles have been extensively studied for catalyzing the photo-degradation of organic pollutants, the photocatalyst being nonselective to the substrate. We, however, found that TiO2 nanoparticles prepared via the sol-gel and hydrothermal synthetic routes each possess a definite specificity to the charge of the substrate for photodegradation. The nanoparticles were characterized by SEM, FTIR, XRD, TGA, and UV-visible spectra, and the photocatalytic degradation under UV-B (285 nm) irradiation of two model compounds, anionic methyl Orange (MO) and cationic methylene blue (MB) was monitored by a UV-visible spectrophotometer. Untreated sol-gel TiO2 nanoparticles (Tsg) preferentially degraded MO over MB (90% versus 40% in two hours), while after calcination at 400 °C for two hours (Tsgc) they showed reversed specificity (50% MO versus 90% MB in one hour). The as-prepared hydrothermal TiO2 nanoparticles (Tht) behaved in the opposite sense of Tsg (41% MO versus 91% MB degraded in one and a half hours); calcination at 400 °C (Thtc) did not reverse the trend but enhanced the efficiency of degradation. The study indicates that TiO2 nanoparticles can be made to degrade a specific class of organic pollutants from an effluent facilitating the recycling of a specific class of pollutants for cost-effective effluent management.
- Published
- 2023
- Full Text
- View/download PDF