C. La Tessa, M. De Rydt, Marco Pinto, M. Testa, J. Krimmer, Dieter Schardt, George Dedes, F. Roellinghoff, I Rinaldi, Stephan Brons, Nicolas Freud, Etienne Testa, Cédric Ray, Katia Parodi, R. Pleskac, M. Chevallier, Damien Prieels, M. Bajard, Denis Dauvergne, Jean Michel Létang, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), PRISME (PRISME), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Heidelberg Ion Beam Therapy Center - HIT, Heidelberg University Clinic, Instituut voor Kern- enStralingsfysica, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Biophysics Department [Darmstadt], Helmholtz Centre for Heavy Ion Research (GSI), Heidelberg University Hospital [Heidelberg], Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU), Ion Beam Applications SA, and IBA
International audience; Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10−6 for 95 MeV u−1 carbon ions, (79 ± 2stat ± 23sys) × 10−6 for 310 MeV u−1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10−6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u−1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u−1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10−6 counts ion−1 mm−1 sr−1) was obtained with a water target compared to a PMMA one.