1. Potential for Volcanogenic Massive Sulfide Mineralization at the A6 Anomaly, North-West British Columbia, Canada: Stratigraphy, Lithogeochemistry, and Alteration Mineralogy and Chemistry
- Author
-
Stefanie M. Brueckner, Gregory Johnson, Stephanie Wafforn, Harold Gibson, Ross Sherlock, Christina Anstey, and Ken McNaughton
- Subjects
lithogeochemistry ,alteration mineralogy and mineral chemistry ,illite chemistry ,oxygen isotope ,geothermometry ,exploration ,Mineralogy ,QE351-399.2 - Abstract
The Middle Jurassic A6 Anomaly is located 30 km southeast of Eskay Creek, north-central British Columbia and consists of thick, altered felsic igneous rocks overlain by a mafic volcano-sedimentary package. Lithogeochemistry on igneous rocks, X-ray diffraction on altered felsic units, and electron probe microanalysis and secondary ion mass spectrometry on illite and quartz were applied to explore the volcanogenic massive sulfide (VMS) potential, characterize alteration, and determine fluid conditions at the A6 Anomaly. Lithogeochemistry revealed calc-alkaline rhyodacite to trachyte of predominantly FII type, tholeiitic basalts with Nb/Yb < 1.6 (i.e., Group A), and transitional to calc-alkaline basalts and andesites with Nb/Yb > 2.2 (i.e., Group B). The felsic units showed weakly to moderately phyllic alteration (quartz–illite with minor orthoclase and trace chlorite–pyrite–calcite–barite–rutile). Illite ranged in composition from illite/smectite (K = 0.5–0.69 apfu) to almost endmember illite (K = 0.69–0.8 apfu), and formed from feldspar destruction by mildly acidic, relatively low temperature, oxidized hydrothermal fluids. The average δ18O composition was 10.7 ± 3.0‰ and 13.4 ± 1.3‰ relative to Vienna Standard Mean Ocean Water for illite and quartz, respectively. Geothermometry involving illite composition and oxygen isotope composition on illite and quartz yielded average fluid temperatures of predominantly 200–250 °C. Lithogeochemical results showed that the A6 Anomaly occurred in a late-Early to Middle Jurassic evolving back-arc basin, further east then previously recognized and in which transitional to calc-alkaline units formed by crustal assimilation to enriched Mid-Ocean Ridge Basalt (EMORB) (i.e., felsic units, Group B), followed by thinning of the crust resulting in tholeiitic normalized MORB basalts (i.e., Group A) with a minor crustal component. The alteration assemblage is representative of distal footwall alteration, and metal transport in this zone was limited despite favorable temperature, pH, and redox state, indicating a metal depleted source (i.e., felsic units).
- Published
- 2021
- Full Text
- View/download PDF