1. Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing
- Author
-
Sophie Lennartz, Harriet A. Byrne, Steffen Kümmel, Martin Krauss, and Karolina M. Nowak
- Subjects
Science - Abstract
Abstract Biodegradability testing in soil helps to identify safe synthetic organic chemicals but is still obscured by the formation of soil-bound ‘non-extractable’ residues (NERs). Present-day methodologies using radiocarbon or stable (13C, 15N) isotope labeling cannot easily differentiate soil-bound parent chemicals or transformation products (xenoNERs) from harmless soil-bound biomolecules of microbial degraders (bioNERs). Hypothesizing a minimal retention of hydrogen in biomolecules, we here apply stable hydrogen isotope – deuterium (D) – labeling to unravel the origin of NERs. Soil biodegradation tests with D- and 13C-labeled 2,4-D, glyphosate and sulfamethoxazole reveal consistently lower proportions of applied D than 13C in total NERs and in amino acids, a quantitative biomarker for bioNERs. Soil-bound D thus mostly represents xenoNERs and not bioNERs, enabling an efficient quantification of xenoNERs by just measuring the total bound D. D or tritium (T) labeling could thus improve the value of biodegradability testing results for diverse organic chemicals forming soil-bound residues.
- Published
- 2024
- Full Text
- View/download PDF