255 results on '"M Nocente"'
Search Results
2. Energy-selective confinement of fusion-born alpha particles during internal relaxations in a tokamak plasma
- Author
-
A. Bierwage, K. Shinohara, Ye.O. Kazakov, V. G. Kiptily, Ph. Lauber, M. Nocente, Ž. Štancar, S. Sumida, M. Yagi, J. Garcia, S. Ide, and JET Contributors
- Subjects
Science - Abstract
Confining plasma for fusion requires controlling many parameters. Here the authors report the existence of a narrow parameter space for the simultaneous confinement of energetic alpha particles and removal of slowed-down helium ash in a magnetically confined fusion plasma by using kinetic-magnetohydrodynamic hybrid simulations.
- Published
- 2022
- Full Text
- View/download PDF
3. A model for analytical calculations of synthetic neutron energy spectra from beam-target reactions
- Author
-
A. Valentini, B.C.G. Reman, M. Nocente, J. Eriksson, H. Järleblad, D. Moseev, M. Rud, B.S. Schmidt, A. Snicker, and M. Salewski
- Subjects
fast ions ,nuclear reactions ,neutron emission spectroscopy ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
We present a fully analytical model for calculating energy spectra of neutrons generated by fusion reactions involving a fast ion, or beam, and a stationary ion, or target, in magnetic fusion plasmas. For neutrons moving along the line-of-sight of a detector, the neutron spectrum is given by an analytical expression and the usual differential cross section. This makes the model several orders of magnitude faster than ordinary Monte Carlo simulations and free of any related statistical noise. Additionally, the analytical description of the reaction physics provides much more insight into the formation of the spectrum. An example of this is the bias of beam-target spectra towards high-energy neutron counts, which corresponds to forward-emission events. On the other hand, the fast-ion uniform gyro-angle distribution has an opposite effect, but is ultimately weaker than the preferential forward emission of neutrons. The model is validated against numerical calculations from the forward model code GENESIS to verify its validity and it is furthermore derived from a probabilistic viewpoint, adding further insight.
- Published
- 2024
- Full Text
- View/download PDF
4. Reconstruction of the fast-ion deuterium distribution in a tritium-rich plasma in the JET DTE2 campaign
- Author
-
H. Järleblad, B.C.G. Reman, Y. Dong, M. Nocente, J. Eriksson, A. Valentini, M. Rud, A. Dal Molin, J. Garcia, Ye.O. Kazakov, D. Keeling, D. King, E.A. Lerche, R. Lorenzini, C. Maggi, M. Maslov, D. Moseev, D. Rigamonti, Bo S. Schmidt, Ž. Štancar, M. Tardocchi, M. Salewski, JET Contributors, and the EUROfusion Tokamak Exploitation Team
- Subjects
DT ,fast-ion distribution ,tomographic reconstruction ,JET ,slowing-down regularization ,neutron diagnostics ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
An important step on the way to future fusion power plants was the 2021 deuterium–tritium experimental campaign (DTE2) at the Joint European Torus (JET), in which crucial DT physics was investigated. In this study, we have reconstructed the fast-ion deuterium distribution function in JET discharge 99971 which broke the former fusion energy record. It is the first time that the fast-ion distribution has been reconstructed from experimental data in a DT discharge. The reconstruction shows that the fast-ion deuterium distribution is anisotropic, with a bias towards co-going ions ( p > 0). The fast-ion deuterium distribution likely peaks in energy ( E ) at around $E\sim 60$ –70 keV and has a marginal high-energy tail ( $E\gtrsim 180$ keV). Furthermore, an orbit analysis shows that the fast-ion distribution is composed of mostly co-passing orbits ( $50 \%$ ), trapped orbits ( $21 \%$ ) and counter-passing orbits ( $27 \%$ ), as well as a small population of potato orbits ( $1.7 \%$ ) and counter-stagnation orbits ( $0.3 \%$ ). The orbit-type constituents of the neutron measurements are distributed in similar fractions.
- Published
- 2024
- Full Text
- View/download PDF
5. Corrigendum: Simultaneous measurements of unstable and stable Alfvén eigenmodes in JET (2022 Nucl. Fusion 62 112008)
- Author
-
R.A. Tinguely, J. Gonzalez-Martin, P.G. Puglia, N. Fil, S. Dowson, M. Porkolab, I. Kumar, M. Podestà, M. Baruzzo, A. Fasoli, Ye.O. Kazakov, M.F.F. Nave, M. Nocente, J. Ongena, Ž. Štancar, and JET Contributors
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Published
- 2024
- Full Text
- View/download PDF
6. Fast-ion orbit origin of neutron emission spectroscopy measurements in the JET DT campaign
- Author
-
H. Järleblad, L. Stagner, J. Eriksson, M. Nocente, K. Kirov, M. Rud, B.S. Schmidt, M. Maslov, D. King, D. Keeling, C. Maggi, J. Garcia, E.A. Lerche, P. Mantica, Y. Dong, M. Salewski, and JET Contributors
- Subjects
fast ion ,orbit ,diagnostics ,dt ,neutron emission spectroscopy ,sensitivity ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In the JET DTE2 deuterium-tritium campaign, neutron diagnostics were employed to measure 14 MeV neutrons originating from D(T,n) ^4 He reactions. In discharge 99965, a diamond matrix detector (KM14) and a magnetic proton recoil (MPRu) detector with a vertical and an oblique line-of-sight were used, respectively. At the timepoints of interest, a significant decrease in the expected diagnostic signals can be observed as electromagnetic wave heating in the ion cyclotron range of frequencies (ICRF) is switched off. Utilizing only TRANSP simulation data, the fast-ion distribution is found to have been likely composed mostly of trapped orbits. In contrast, analysis performed using orbit weight functions revealed that the majority of neutrons in the KM14 $E_{d} = 9.3$ MeV and MPRu $X_\textrm{cm} = 33$ cm measurement bins are to have originated from fast deuterium ions on co-passing orbits. This work explains the perhaps surprising results and shows that the relative signal decrease as ICRF heating is switched off is largest for counter-passing orbits. Finally, for the magnetic equilibria of interest, it is shown how stagnation orbits, corresponding to ${\sim} 1$ % of the fast-ion distribution, were completely unobservable by the KM14 diagnostic.
- Published
- 2024
- Full Text
- View/download PDF
7. Overview of ASDEX upgrade results in view of ITER and DEMO
- Author
-
H. Zohm, E. Alessi, C. Angioni, N. Arden, V. Artigues, M. Astrain, O. Asunta, M. Balden, V. Bandaru, A. Banon Navarro, M. Bauer, A. Bergmann, M. Bergmann, J. Bernardo, M. Bernert, A. Biancalani, R. Bielajew, R. Bilato, G. Birkenmeier, T. Blanken, V. Bobkov, A. Bock, L. Bock, T. Body, T. Bolzonella, N. Bonanomi, A. Bortolon, B. Böswirth, C. Bottereau, A. Bottino, H. van den Brand, M. Brenzke, S. Brezinsek, D. Brida, F. Brochard, J. Buchanan, A. Buhler, A. Burckhart, Y. Camenen, B. Cannas, P. Cano Megías, D. Carlton, M. Carr, P. Carvalho, C. Castaldo, A. Castillo Castillo, A. Cathey, M. Cavedon, C. Cazzaniga, C. Challis, A. Chankin, A. Chomiczewska, C. Cianfarani, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, L. Colas, G. Conway, S. Costea, D. Coster, T. Cote, A.J. Creely, G. Croci, D.J. Cruz Zabala, G. Cseh, I. Cziegler, O. D’Arcangelo, A. Dal Molin, P. David, C. Day, M. de Baar, P. de Marné, R. Delogu, P. Denner, A. Di Siena, M. Dibon, J.J. Dominguez-Palacios Durán, D. Dunai, M. Dreval, M. Dunne, B.P. Duval, R. Dux, T. Eich, S. Elgeti, A. Encheva, B. Esposito, E. Fable, M. Faitsch, D. Fajardo Jimenez, U. Fantz, M. Farnik, H. Faugel, F. Felici, O. Ficker, A. Figueredo, R. Fischer, O. Ford, L. Frassinetti, M. Fröschle, G. Fuchert, J.C. Fuchs, H. Fünfgelder, S. Futatani, K. Galazka, J. Galdon-Quiroga, D. Gallart Escolà, A. Gallo, Y. Gao, S. Garavaglia, M. Garcia Muñoz, B. Geiger, L. Giannone, S. Gibson, L. Gil, E. Giovannozzi, I. Girka, O. Girka, T. Gleiter, S. Glöggler, M. Gobbin, J.C. Gonzalez, J. Gonzalez Martin, T. Goodman, G. Gorini, T. Görler, D. Gradic, G. Granucci, A. Gräter, G. Grenfell, H. Greuner, M. Griener, M. Groth, O. Grover, A. Gude, L. Guimarais, S. Günter, D. Hachmeister, A.H. Hakola, C. Ham, T. Happel, N. den Harder, G. Harrer, J. Harrison, V. Hauer, T. Hayward-Schneider, B. Heinemann, P. Heinrich, T. Hellsten, S. Henderson, P. Hennequin, M. Herschel, S. Heuraux, A. Herrmann, E. Heyn, F. Hitzler, J. Hobirk, K. Höfler, S. Hörmann, J.H. Holm, M. Hölzl, C. Hopf, L. Horvath, T. Höschen, A. Houben, A. Hubbard, A. Huber, K. Hunger, V. Igochine, M. Iliasova, J. Illerhaus, K. Insulander Björk, C. Ionita-Schrittwieser, I. Ivanova-Stanik, S. Jachmich, W. Jacob, N. Jaksic, A. Jansen van Vuuren, F. Jaulmes, F. Jenko, T. Jensen, E. Joffrin, A. Kallenbach, J. Kalis, A. Kappatou, J. Karhunen, C.-P. Käsemann, S. Kasilov, Y. Kazakov, A. Kendl, W. Kernbichler, E. Khilkevitch, M. Kircher, A. Kirk, S. Kjer Hansen, V. Klevarova, F. Klossek, G. Kocsis, M. Koleva, M. Komm, M. Kong, A. Krämer-Flecken, M. Krause, I. Krebs, A. Kreuzeder, K. Krieger, O. Kudlacek, D. Kulla, T. Kurki-Suonio, B. Kurzan, B. Labit, K. Lackner, F. Laggner, A. Lahtinen, P. Lainer, P.T. Lang, P. Lauber, M. Lehnen, L. Leppin, E. Lerche, N. Leuthold, L. Li, J. Likonen, O. Linder, H. Lindl, B. Lipschultz, Y. Liu, Z. Lu, T. Luda Di Cortemiglia, N.C. Luhmann, T. Lunt, A. Lyssoivan, T. Maceina, J. Madsen, A. Magnanimo, H. Maier, J. Mailloux, R. Maingi, O. Maj, E. Maljaars, V. Maquet, A. Mancini, A. Manhard, P. Mantica, M. Mantsinen, P. Manz, M. Maraschek, C. Marchetto, M. Markl, L. Marrelli, P. Martin, F. Matos, M. Mayer, P.J. McCarthy, R. McDermott, G. Meng, R. Merkel, A. Merle, H. Meyer, M. Michelini, D. Milanesio, V. Mitterauer, P. Molina Cabrera, M. Muraca, F. Nabais, V. Naulin, R. Nazikian, R.D. Nem, R. Neu, A.H. Nielsen, S.K. Nielsen, T. Nishizawa, M. Nocente, I. Novikau, S. Nowak, R. Ochoukov, J. Olsen, P. Oyola, O. Pan, G. Papp, A. Pau, G. Pautasso, C. Paz-Soldan, M. Peglau, E. Peluso, P. Petersson, C. Piron, U. Plank, B. Plaum, B. Plöckl, V. Plyusnin, G. Pokol, E. Poli, A. Popa, L. Porte, J. Puchmayr, T. Pütterich, L. Radovanovic, M. Ramisch, J. Rasmussen, G. Ratta, S. Ratynskaia, G. Raupp, A. Redl, D. Réfy, M. Reich, F. Reimold, D. Reiser, M. Reisner, D. Reiter, B. Rettino, T. Ribeiro, D. Ricci, R. Riedl, J. Riesch, J.F. Rivero Rodriguez, G. Rocchi, P. Rodriguez-Fernandez, V. Rohde, G. Ronchi, M. Rott, M. Rubel, D.A. Ryan, F. Ryter, S. Saarelma, M. Salewski, A. Salmi, O. Samoylov, L. Sanchis Sanchez, J. Santos, O. Sauter, G. Schall, A. Schlüter, J. Scholte, K. Schmid, O. Schmitz, P.A. Schneider, R. Schrittwieser, M. Schubert, C. Schuster, N. Schwarz, T. Schwarz-Selinger, J. Schweinzer, F. Sciortino, O. Seibold-Benjak, A. Shabbir, A. Shalpegin, S. Sharapov, U. Sheikh, A. Shevelev, G. Sias, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva, C. Silva, D. Silvagni, J. Simpson, S. Sipilä, A. Snicker, E. Solano, C. Sommariva, C. Sozzi, M. Spacek, G. Spizzo, M. Spolaore, A. Stegmeir, M. Stejner, D. Stieglitz, J. Stober, U. Stroth, E. Strumberger, G. Suarez Lopez, W. Suttrop, T. Szepesi, B. Tál, T. Tala, W. Tang, G. Tardini, M. Tardocchi, D. Terranova, M. Teschke, E. Thorén, W. Tierens, D. Told, W. Treutterer, G. Trevisan, M. Tripský, P. Ulbl, G. Urbanczyk, M. Usoltseva, M. Valisa, M. Valovic, S. van Mulders, M. van Zeeland, F. Vannini, B. Vanovac, P. Varela, S. Varoutis, T. Verdier, G. Verdoolaege, N. Vianello, J. Vicente, T. Vierle, E. Viezzer, I. Voitsekhovitch, U. von Toussaint, D. Wagner, X. Wang, M. Weiland, D. Wendler, A.E. White, M. Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, Q. Yang, C. Yoo, Q. Yu, R. Zagórski, I. Zammuto, T. Zehetbauer, W. Zhang, W. Zholobenko, A. Zibrov, M. Zilker, C.F.B. Zimmermann, A. Zito, S. Zoletnik, the EUROfusion Tokamak Exploitation Team, and the ASDEX Upgrade Team
- Subjects
tokamak ,MHD stability ,transport modelling ,radiative exhaust ,disruption physics ,ELM free scenarios ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98( p,y ) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q -profile) were established on AUG and characterised concerning their plasma performance.
- Published
- 2024
- Full Text
- View/download PDF
8. DIII-D research to provide solutions for ITER and fusion energy
- Author
-
C.T. Holcomb, for the DIII-D Team:, J. Abbate, A. Abe, A. Abrams, P. Adebayo-Ige, S. Agabian, S. Ahmed, N. Aiba, N. Akcay, T. Akiyama, R. Albosta, P. Aleynikov, S. Allen, H. Anand, J. Anderson, Y. Andrew, M. Ashburn, A. Ashourvan, M. Austin, G. Avdeeva, D. Ayala, M. Ayub, E. Bagdy, S. Banerjee, K. Barada, L. Bardoczi, O. Bardsley, J. Barr, E. Bass, A. Battey, Z. Bayler, L. Baylor, T. Bechtel, M. Beidler, E. Belli, T. Benedett, Z. Bergstrom, M. Berkel, T. Bernard, N. Bertelli, R. Bielajew, G. Bodner, J. Boedo, R. Boivin, T. Bolzonella, P. Bonoli, A. Bortolon, S. Bose, M. Boyer, W. Boyes, L. Bradley, R. Brambila, A. Braun, D. Brennan, S. Bringuier, L. Brodsky, M. Brookman, J. Brooks, D. Brower, W. Brown, J. Buck, S. Buczek, D. Burgess, M. Burke, K. Burrell, J. Butt, R. Buttery, I. Bykov, P. Byrne, A. Cacheris, K. Callahan, J. Callen, D. Campbell, J. Candy, J. Canik, L. Cappelli, T. Carlstrom, R. Carr, W. Carrig, B. Carter, T. Carter, I. Carvalho, W. Cary, L. Casali, L. Ceelen, M. Cengher, M. Cha, R. Chaban, V. Chan, B. Chapman, I. Char, J. Chen, R. Chen, X. Chen, Y. Chen, J. Chiriboga, E. Cho, G. Choi, W. Choi, H. Choudhury, S. Chowdhury, C. Chrystal, Y. Chung, R. Churchill, R. Clark, M. Clement, J. Coburn, S. Coda, R. Coffee, C. Collins, J. Colmenares-Fernandez, W. Conlin, R. Coon, T. Cote, A. Creely, N. Crocker, C. Crowe, B. Crowley, T. Crowley, M. Curie, D. Curreli, A. Dal Molin, J. Damba, E. Dart, A. Dautt-Silva, K. Davda, A. De, N. de Boucaud, Y. de Jong, P. DE VRIES, A. de-Villeroche, G. DeGrandchamp, J. deGrassie, D. Demers, S. Denk, E. DeShazer, S. Di Genova, A. Diallo, A. Dimits, R. Ding, S. Ding, D. Donovan, X. Du, J. Dunsmore, A. Dupuy, J. Duran, A. Dvorak, F. Effenberg, N. Eidietis, D. Elder, D. Eldon, Y. Elsey, D. Ennis, K. Erickson, D. Ernst, M. Fajardo, H. Farre-Kaga, M. Fenstermacher, N. Ferraro, J. Ferron, A. Feyrer, P. Fimognari, R. Finden, D. Finkenthal, R. Fitzpatrick, S. Flanagan, B. Ford, W. Fox, S. Freiberger, L. Fu, K. Gage, V. Gajaraj, I. Garcia, F. Garcia, A. Garcia, M. Garcia Munoz, D. Garnier, A. Garofalo, A. Gattuso, B. Geiger, K. Gentle, Y. Ghai, K. Gill, F. Glass, P. Gohil, X. Gong, J. Gonzalez-Martin, Y. Gorelov, V. Graber, R. Granetz, C. Gray, C. Greenfield, B. Grierson, R. Groebner, W. Grosnickle, M. Groth, S. Gu, H. Guo, J. Guterl, W. Guttenfelder, R. Hager, S. Hahn, M. Halfmoon, J. Hall, V. Hall-Chen, F. Halpern, G. Hammett, X. Han, C. Hansen, E. Hansen, J. Hanson, M. Hanson, A. Harris, R. Harvey, S. Haskey, D. Hatch, W. Hayashi, A. Hayes, W. Heidbrink, J. Herfindal, J. Hicok, E. Hinson, T. Hisakado, C. Holcomb, C. Holland, L. Holland, E. Hollmann, A. Holm, I. Holmes, K. Holtrop, R. Hong, R. Hood, L. Horvath, S. Houshmandyar, N. Howard, E. Howell, W. Hu, Y. Hu, Q. Hu, Y. Huang, J. Huang, A. Huang, A. Hubbard, J. Hughes, D. Humphreys, J. Hurtado, A. Hyatt, K. Imada, V. Izzo, A. Jalalvand, S. Jardin, A. Jarvinen, Y. Jeon, H. Ji, X. Jian, L. Jian, Y. Jiang, C. Johnson, J. Johnson, M. Jones, S. Joung, P. Jouzdani, E. Jung, E. Kallenberg, R. Kalling, D. Kaplan, A. Kaptanoglu, D. Kellman, J. Kennedy, F. Khabanov, J. Kim, H. Kim, E. Kim, S. Kim, K. Kim, C. Kim, T. Kim, J. King, A. Kinsey, D. Kirk, D. Klasing, A. Kleiner, M. Knolker, M. Kochan, B. Koel, J. Koenders, M. Koepke, R. Kolasinski, E. Kolemen, E. Kostadinova, M. Kostuk, G. Kramer, R. Kube, N. Kumar, R. La Haye, F. Laggner, C. Lahban, H. Lan, R. Landry, R. Lantsov, L. Lao, C. Lasnier, C. Lau, R. Leccacorvi, J. Leddy, M. Lee, S. Lee, K. Lee, R. Lee, M. Lehnen, A. Leonard, E. Leppink, M. LeSher, J. Lestz, J. Leuer, N. Leuthold, G. Li, X. Li, Y. Li, L. Li, N. Li, Z. Li, D. Lin, Z. Lin, Y. Lin, E. Linsenmayer, J. Liu, D. Liu, C. Liu, Z. Liu, Y. Liu, A. Loarte-Prieto, S. Loch, L. LoDestro, N. Logan, J. Lohr, J. Lore, U. Losada Rodriguez, J. Loughran, M. Lowell, T. Luce, N. Luhmann, P. Lunia, R. Lunsford, L. Lupin-Jimenez, A. Lvovskiy, B. Lyons, X. Ma, J. MacDonald, T. Macwan, R. Maingi, M. Major, L. Malhotra, M. Margo, C. Marini, A. Marinoni, A. Maris, E. Martin, J. Mateja, R. Mattes, R. Maurizio, D. Mauzey, L. McAllister, G. McArdle, J. McClenaghan, K. McCollam, G. McKee, K. McLaughlin, A. McLean, V. Mehta, E. Meier, S. Meitner, J. Menard, O. Meneghini, G. Merlo, S. Messer, W. Meyer, C. Michael, D. Miller, M. Miller, J. Mitchell, E. Mitra, C. Moeller, M. Mohamed, S. Molesworth, K. Montes, S. Mordijck, S. Morosohk, A. Moser, D. Mueller, S. Munaretto, C. Murphy, C. Muscatello, R. Myers, A. Nagy, D. Nath, M. Navarro, R. Nazikian, T. Neiser, A. Nelson, P. Nesbet, F. Nespoli, P. Nguyen, D. Nguyen, R. Nguyen, J. Nichols, M. Nocente, L. Nuckols, R. Nygren, T. Odstrcil, M. Okabayashi, E. Olofsson, D. Orlov, D. Orozco, N. Osborne, T. Osborne, F. OShea, D. Pace, D. Packard, A. Pajares Martinez, C. Pakosta, C. Pan, M. Pandya, D. Panici, A. Pankin, Y. Park, J. Park, C. Parker, S. Parker, P. Parks, M. Parsons, S. Paruchuri, C. Paz-Soldan, T. Pederson, W. Peebles, B. Penaflor, E. Perez, L. Periasamy, R. Perillo, C. Petty, M. Pharr, D. Pierce, C. Pierren, S. Pierson, A. Pigarov, L. Pigatto, D. Piglowski, S. Pinches, R. Pinsker, R. Pitts, J. Pizzo, M. Podesta, Z. Popovic, M. Porkolab, Q. Pratt, G. Prechel, I. Pusztai, P. Puthan-Naduvakkate, J. Qian, X. Qin, O. Ra, T. Raines, K. Rakers, K. Rath, J. Rauch, C. Rea, R. Reed, A. Reiman, M. Reinke, R. Reksoatmodjo, Q. Ren, J. Ren, Y. Ren, M. Rensink, T. Rhodes, N. Richner, J. Ridzon, G. Riggs, J. Riquezes, P. Rodriguez Fernandez, T. Rognlien, G. Ronchi, L. Rondini, R. Rosati, A. Rosenthal, M. Ross, J. Rost, A. Rothstein, J. Roveto, J. Ruane, D. Rudakov, R. Rupani, G. Rutherford, S. Sabbagh, J. Sachdev, N. Sadeghi, A. Salmi, F. Salvador, B. Sammuli, C. Samuell, A. Sandorfi, C. Sang, D. Santa, J. Sarff, O. Sauter, H. Savelli, C. Schaefer, H. Schamis, J. Schellpfeffer, D. Schissel, L. Schmitz, O. Schmitz, P. Schroeder, K. Schultz, E. Schuster, F. Sciortino, F. Scotti, J. Scoville, A. Seltzman, J. Seo, J. Serrano, I. Sfiligoi, M. Shafer, R. Shapov, H. Shen, N. Shi, D. Shiraki, B. Short, R. Shousha, H. Si, C. Sierra, G. Sinclair, P. Sinha, G. Sips, C. Skinner, T. Slendebroek, J. Slief, R. Smirnov, S. Smith, D. Smith, G. Snoep, P. Snyder, W. Solomon, X. Song, A. Sontag, V. Soukhanovskii, D. Spong, J. Squire, G. Staebler, L. Stagner, T. Stange, P. Stangeby, E. Starling, S. Stewart, T. Stoltzfus-Dueck, S. Storment, E. Strait, D. Su, L. Sugiyama, P. Sun, Y. Sun, X. Sun, C. Sung, W. Suttrop, Y. Suzuki, R. Sweeney, B. Taczak, Y. Takemura, S. Tang, W. Tang, G. Tardini, D. Taussig, K. Teixeira, K. Thackston, D. Thomas, K. Thome, Y. Tinguely, M. Tobin, J. Tooker, A. Torrezan de Sousa, P. Traverso, G. Trevisan, E. Trier, D. Truong, C. Tsui, F. Turco, A. Turnbull, L. Turner, E. Unterberg, B. Van Compernolle, R. van Kampen, M. Van Zeeland, B. Victor, R. Vieira, E. Viezzer, S. Vincena, D. Vollmer, J. Wai, M. Walker, R. Waltz, W. Wampler, L. Wang, Y. Wang, H. Wang, Z. Wang, G. Wang, A. Wang, J. Watkins, M. Watkins, T. Watts, L. Webber, K. Weber, W. Wehner, X. Wei, D. Weisberg, A. Welander, A. Welsh, A. White, R. Wilcox, G. Wilkie, T. Wilks, M. Willensdorfer, H. Wilson, A. Wingen, M. Wu, D. Wu, S. Wukitch, J. Xia, R. Xie, Z. Xing, G. Xu, X. Xu, Z. Yan, X. Yang, L. Yang, S. Yang, J. Yang, M. Yoo, G. YU, J. Yu, A. Zalzali, A. Zamengo, V. Zamkovska, S. Zamperini, K. Zarrabi, E. Zeger, K. Zeller, L. Zeng, X. Zhang, J. Zhang, B. Zhang, B. Zhao, C. Zhao, Y. Zheng, Y. Zhu, J. Zhu, J. Ziegel, J. Zimmerman, and C. Zuniga
- Subjects
DIII-D ,tokamak ,overview ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The DIII-D tokamak has elucidated crucial physics and developed projectable solutions for ITER and fusion power plants in the key areas of core performance, boundary heat and particle transport, and integrated scenario operation, with closing the core-edge integration knowledge gap being the overarching mission. New experimental validation of high-fidelity, multi-channel, non-linear gyrokinetic turbulent transport models for ITER provides strong confidence it will achieve Q ⩾ 10 operation. Experiments identify options for easing H-mode access in hydrogen, and give new insight into the isotopic dependence of transport and confinement. Analysis of 2,1 islands in unoptimized low-torque IBS demonstration discharges suggests their onset time occurs randomly in the constant β phase, most often triggered by non-linear 3-wave coupling, thus identifying an NTM seeding mechanism to avoid. Pure deuterium SPI for disruption mitigation is shown to provide favorable slow cooling, but poor core assimilation, suggesting paths for improved SPI on ITER. At the boundary, measured neutral density and ionization source fluxes are strongly poloidally asymmetric, implying a 2D treatment is needed to model pedestal fuelling. Detailed measurements of pedestal and SOL quantities and impurity charge state radiation in detached divertors has validated edge fluid modelling and new self-consistent ‘pedestal-to-divertor’ integrated modeling that can be used to optimize reactors. New feedback adaptive ELM control minimizes confinement reduction, and RMP ELM suppression with sustained high core performance was obtained for the first time with the outer strike point in a W-coated, compact and unpumped small-angle slot divertor. Advances have been made in integrated operational scenarios for ITER and power plants. Wide pedestal intrinsically ELM-free QH-modes are produced with more reactor-relevant conditions, Low torque IBS with W-equivalent radiators can exhibit predator-prey oscillations in T _e and radiation which need control. High- β _P scenarios with q _min > 2, q _95 –7.9, β _N > 4, β _T –3.3% and H _98y2 > 1.5 are sustained with high density ( $\bar n$ = 7E19 m ^−3 , f _G –1) for 6 τ _E , improving confidence in steady-state tokamak reactors. Diverted NT plasmas achieve high core performance with a non-ELMing edge, offering a possible highly attractive core-edge integration solution for reactors.
- Published
- 2024
- Full Text
- View/download PDF
9. Overview of the EUROfusion Tokamak Exploitation programme in support of ITER and DEMO
- Author
-
E. Joffrin, M. Wischmeier, M. Baruzzo, A. Hakola, A. Kappatou, D. Keeling, B. Labit, E. Tsitrone, N. Vianello, the ASDEX Upgrade Team, JET Contributors, the MAST-U Team, the TCV Team, the WEST Team, the EUROfusion Tokamak Exploitation Team:, D. Abate, J. Adamek, M. Agostini, C. Albert, F.C.P. Albert Devasagayam, S. Aleiferis, E. Alessi, J. Alhage, S. Allan, J. Allcock, M. Alonzo, G. Anastasiou, E. Andersson Sunden, C. Angioni, Y. Anquetin, L. Appel, G.M. Apruzzese, M. Ariola, C. Arnas, J.F. Artaud, W. Arter, O. Asztalos, L. Aucone, M.H. Aumeunier, F. Auriemma, J. Ayllon, E. Aymerich, A. Baciero, F. Bagnato, L. Bähner, F. Bairaktaris, P. Balázs, L. Balbinot, I. Balboa, M. Balden, A. Balestri, M. Baquero Ruiz, T. Barberis, C. Barcellona, O. Bardsley, S. Benkadda, T. Bensadon, E. Bernard, M. Bernert, H. Betar, R. Bianchetti Morales, J. Bielecki, R. Bilato, P. Bilkova, W. Bin, G. Birkenmeier, R. Bisson, P. Blanchard, A. Bleasdale, V. Bobkov, A. Boboc, A. Bock, K. Bogar, P. Bohm, T. Bolzonella, F. Bombarda, N. Bonanomi, L. Boncagni, D. Bonfiglio, R. Bonifetto, M. Bonotto, D. Borodin, I. Borodkina, T.O.S.J. Bosman, C. Bourdelle, C. Bowman, S. Brezinsek, D. Brida, F. Brochard, R. Brunet, D. Brunetti, V. Bruno, R. Buchholz, J. Buermans, H. Bufferand, P. Buratti, A. Burckhart, J. Cai, R. Calado, J. Caloud, S. Cancelli, F. Cani, B. Cannas, M. Cappelli, S. Carcangiu, A. Cardinali, S. Carli, D. Carnevale, M. Carole, M. Carpita, D. Carralero, F. Caruggi, I.S. Carvalho, I. Casiraghi, A. Casolari, F.J. Casson, C. Castaldo, A. Cathey, F. Causa, J. Cavalier, M. Cavedon, J. Cazabonne, M. Cecconello, L. Ceelen, A. Celora, J. Cerovsky, C.D. Challis, R. Chandra, A. Chankin, B. Chapman, H. Chen, M. Chernyshova, A.G. Chiariello, P. Chmielewski, A. Chomiczewska, C. Cianfarani, G. Ciraolo, J. Citrin, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, I.H. Coffey, C. Colandrea, L. Colas, S. Conroy, C. Contre, N.J. Conway, L. Cordaro, Y. Corre, D. Costa, S. Costea, D. Coster, X. Courtois, C. Cowley, T. Craciunescu, G. Croci, A.M. Croitoru, K. Crombe, D.J. Cruz Zabala, G. Cseh, T. Czarski, A. Da Ros, A. Dal Molin, M. Dalla Rosa, Y. Damizia, O. D’Arcangelo, P. David, M. De Angeli, E. De la Cal, E. De La Luna, G. De Tommasi, J. Decker, R. Dejarnac, D. Del Sarto, G. Derks, C. Desgranges, P. Devynck, S. Di Genova, L.E. di Grazia, A. Di Siena, M. Dicorato, M. Diez, M. Dimitrova, T. Dittmar, L. Dittrich, J.J. Domínguez Palacios Durán, P. Donnel, D. Douai, S. Dowson, S. Doyle, M. Dreval, P. Drews, L. Dubus, R. Dumont, D. Dunai, M. Dunne, A. Durif, F. Durodie, G. Durr Legoupil Nicoud, B. Duval, R. Dux, T. Eich, A. Ekedahl, S. Elmore, G. Ericsson, J. Eriksson, B. Eriksson, F. Eriksson, S. Ertmer, A. Escarguel, B. Esposito, T. Estrada, E. Fable, M. Faitsch, N. Fakhrayi Mofrad, A. Fanni, T. Farley, M. Farník, N. Fedorczak, F. Felici, X. Feng, J. Ferreira, D. Ferreira, N. Ferron, O. Fevrier, O. Ficker, A.R. Field, A. Figueiredo, N. Fil, D. Fiorucci, M. Firdaouss, R. Fischer, M. Fitzgerald, M. Flebbe, M. Fontana, J. Fontdecaba Climent, A. Frank, E. Fransson, L. Frassinetti, D. Frigione, S. Futatani, R. Futtersack, S. Gabriellini, D. Gadariya, D. Galassi, K. Galazka, J. Galdon, S. Galeani, D. Gallart, A. Gallo, C. Galperti, M. Gambrioli, S. Garavaglia, J. Garcia, M. Garcia Munoz, J. Gardarein, L. Garzotti, J. Gaspar, R. Gatto, P. Gaudio, M. Gelfusa, J. Gerardin, S.N. Gerasimov, R. Gerru Miguelanez, G. Gervasini, Z. Ghani, F.M. Ghezzi, G. Ghillardi, L. Giannone, S. Gibson, L. Gil, A. Gillgren, E. Giovannozzi, C. Giroud, G. Giruzzi, T. Gleiter, M. Gobbin, V. Goloborodko, A. González Ganzábal, T. Goodman, V. Gopakumar, G. Gorini, T. Görler, S. Gorno, G. Granucci, D. Greenhouse, G. Grenfell, M. Griener, W. Gromelski, M. Groth, O. Grover, M. Gruca, A. Gude, C. Guillemaut, R. Guirlet, J. Gunn, T. Gyergyek, L. Hagg, J. Hall, C.J. Ham, M. Hamed, T. Happel, G. Harrer, J. Harrison, D. Harting, N.C. Hawkes, P. Heinrich, S. Henderson, P. Hennequin, R. Henriques, S. Heuraux, J. Hidalgo Salaverri, J. Hillairet, J.C. Hillesheim, A. Hjalmarsson, A. Ho, J. Hobirk, E. Hodille, M. Hölzl, M. Hoppe, J. Horacek, N. Horsten, L. Horvath, M. Houry, K. Hromasova, J. Huang, Z. Huang, A. Huber, E. Huett, P. Huynh, A. Iantchenko, M. Imrisek, P. Innocente, C. Ionita Schrittwieser, H. Isliker, P. Ivanova, I. Ivanova Stanik, M. Jablczynska, S. Jachmich, A.S. Jacobsen, P. Jacquet, A. Jansen van Vuuren, A. Jardin, H. Järleblad, A. Järvinen, F. Jaulmes, T. Jensen, I. Jepu, S. Jessica, T. Johnson, A. Juven, J. Kalis, J. Karhunen, R. Karimov, A.N. Karpushov, S. Kasilov, Y. Kazakov, P.V. Kazantzidis, W. Kernbichler, HT. Kim, D.B. King, V.G. Kiptily, A. Kirjasuo, K.K. Kirov, A. Kirschner, A. Kit, T. Kiviniemi, F. Kjær, E. Klinkby, A. Knieps, U. Knoche, M. Kochan, F. Köchl, G. Kocsis, J.T.W. Koenders, L. Kogan, Y. Kolesnichenko, Y. Kominis, M. Komm, M. Kong, B. Kool, S.B. Korsholm, D. Kos, M. Koubiti, J. Kovacic, Y. Kovtun, E. Kowalska Strzeciwilk, K. Koziol, M. Kozulia, A. Krämer Flecken, A. Kreter, K. Krieger, U. Kruezi, O. Krutkin, O. Kudlacek, U. Kumar, H. Kumpulainen, M.H. Kushoro, R. Kwiatkowski, M. La Matina, M. Lacquaniti, L. Laguardia, P. Lainer, P. Lang, M. Larsen, E. Laszynska, K.D. Lawson, A. Lazaros, E. Lazzaro, M.Y.K. Lee, S. Leerink, M. Lehnen, M. Lennholm, E. Lerche, Y. Liang, A. Lier, J. Likonen, O. Linder, B. Lipschultz, A. Listopad, X. Litaudon, E. Litherland Smith, D. Liuzza, T. Loarer, P.J. Lomas, J. Lombardo, N. Lonigro, R. Lorenzini, C. Lowry, T. Luda di Cortemiglia, A. Ludvig Osipov, T. Lunt, V. Lutsenko, E. Macusova, R. Mäenpää, P. Maget, C.F. Maggi, J. Mailloux, S. Makarov, K. Malinowski, P. Manas, A. Mancini, D. Mancini, P. Mantica, M. Mantsinen, J. Manyer, M. Maraschek, G. Marceca, G. Marcer, C. Marchetto, S. Marchioni, A. Mariani, M. Marin, M. Markl, T. Markovic, D. Marocco, S. Marsden, L. Martellucci, P. Martin, C. Martin, F. Martinelli, L. Martinelli, J.R. Martin Solis, R. Martone, M. Maslov, R. Masocco, M. Mattei, G.F. Matthews, D. Matveev, E. Matveeva, M.L. Mayoral, D. Mazon, S. Mazzi, C. Mazzotta, G. McArdle, R. McDermott, K. McKay, A.G. Meigs, C. Meineri, A. Mele, V. Menkovski, S. Menmuir, A. Merle, H. Meyer, K. Mikszuta Michalik, D. Milanesio, F. Militello, A. Milocco, I.G. Miron, J. Mitchell, R. Mitteau, V. Mitterauer, J. Mlynar, V. Moiseenko, P. Molna, F. Mombelli, C. Monti, A. Montisci, J. Morales, P. Moreau, J.M. Moret, A. Moro, D. Moulton, P. Mulholland, M. Muraglia, A. Murari, A. Muraro, P. Muscente, D. Mykytchuk, F. Nabais, Y. Nakeva, F. Napoli, E. Nardon, M.F. Nave, R.D. Nem, A. Nielsen, S.K. Nielsen, M. Nocente, R. Nouailletas, S. Nowak, H. Nyström, R. Ochoukov, N. Offeddu, S. Olasz, C. Olde, F. Oliva, D. Oliveira, H.J.C. Oliver, P. Ollus, J. Ongena, F.P. Orsitto, N. Osborne, R. Otin, P. Oyola Dominguez, D.I. Palade, S. Palomba, O. Pan, N. Panadero, E. Panontin, A. Papadopoulos, P. Papagiannis, G. Papp, V.V. Parail, C. Pardanaud, J. Parisi, A. Parrott, K. Paschalidis, M. Passoni, F. Pastore, A. Patel, B. Patel, A. Pau, G. Pautasso, R. Pavlichenko, E. Pawelec, B. Pegourie, G. Pelka, E. Peluso, A. Perek, E. Perelli Cippo, C. Perez Von Thun, P. Petersson, G. Petravich, Y. Peysson, V. Piergotti, L. Pigatto, C. Piron, L. Piron, A. Pironti, F. Pisano, U. Plank, B. Ploeckl, V. Plyusnin, A. Podolnik, Y. Poels, G. Pokol, J. Poley, G. Por, M. Poradzinski, F. Porcelli, L. Porte, C. Possieri, A. Poulsen, I. Predebon, G. Pucella, M. Pueschel, P. Puglia, O. Putignano, T. Pütterich, V. Quadri, A. Quercia, M. Rabinski, L. Radovanovic, R. Ragona, H. Raj, M. Rasinski, J. Rasmussen, G. Ratta, S. Ratynskaia, R. Rayaprolu, M. Rebai, A. Redl, D. Rees, D. Refy, M. Reich, H. Reimerdes, B.C.G. Reman, O. Renders, C. Reux, D. Ricci, M. Richou, S. Rienacker, D. Rigamonti, F. Rigollet, F.G. Rimini, D. Ripamonti, N. Rispoli, N. Rivals, J.F. Rivero Rodriguez, C. Roach, G. Rocchi, S. Rode, P. Rodrigues, J. Romazanov, C.F. Romero Madrid, J. Rosato, R. Rossi, G. Rubino, J. Rueda Rueda, J. Ruiz Ruiz, P. Ryan, D. Ryan, S. Saarelma, R. Sabot, M. Salewski, A. Salmi, L. Sanchis, A. Sand, J. Santos, K. Särkimäki, M. Sassano, O. Sauter, G. Schettini, S. Schmuck, P. Schneider, N. Schoonheere, R. Schramm, R. Schrittwieser, C. Schuster, N. Schwarz, F. Sciortino, M. Scotto D’Abusco, S. Scully, A. Selce, L. Senni, M. Senstius, G. Sergienko, S.E. Sharapov, R. Sharma, A. Shaw, U. Sheikh, G. Sias, B. Sieglin, S.A. Silburn, C. Silva, A. Silva, D. Silvagni, B. Simmendefeldt Schmidt, L. Simons, J. Simpson, L. Singh, S. Sipilä, Y. Siusko, S. Smith, A. Snicker, E.R. Solano, V. Solokha, M. Sos, C. Sozzi, F. Spineanu, G. Spizzo, M. Spolaore, L. Spolladore, C. Srinivasan, A. Stagni, Z. Stancar, G. Stankunas, J. Stober, P. Strand, C.I. Stuart, F. Subba, G.Y. Sun, H.J. Sun, W. Suttrop, J. Svoboda, T. Szepesi, G. Szepesi, B. Tal, T. Tala, P. Tamain, G. Tardini, M. Tardocchi, D. Taylor, G. Telesca, A. Tenaglia, A. Terra, D. Terranova, D. Testa, C. Theiler, E. Tholerus, B. Thomas, E. Thoren, A. Thornton, A. Thrysoe, Q. TICHIT, W. Tierens, A. Titarenko, P. Tolias, E. Tomasina, M. Tomes, E. Tonello, A. Tookey, M. Toscano Jiménez, C. Tsironis, C. Tsui, A. Tykhyy, M. Ugoletti, M. Usoltseva, D.F. Valcarcel, A. Valentini, M. Valisa, M. Vallar, M. Valovic, SI. Valvis, M. van Berkel, D. Van Eester, S. Van Mulders, M. van Rossem, R. Vann, B. Vanovac, J. Varela Rodriguez, J. Varje, S. Vartanian, M. Vecsei, L. Velarde Gallardo, M. Veranda, T. Verdier, G. Verdoolaege, K. Verhaegh, L. Vermare, G. Verona Rinati, J. Vicente, E. Viezzer, L. Vignitchouk, F. Villone, B. Vincent, P. Vincenzi, M.O. Vlad, G. Vogel, I. Voitsekhovitch, I. Voldiner, P. Vondracek, N.M.T. VU, T. Vuoriheimo, C. Wade, E. Wang, T. Wauters, M. Weiland, H. Weisen, N. Wendler, D. Weston, A. Widdowson, S. Wiesen, M. Wiesenberger, T. Wijkamp, M. Willensdorfer, T. Wilson, A. Wojenski, C. Wuethrich, I. Wyss, L. Xiang, S. Xu, D. Yadykin, Y. Yakovenko, H. Yang, V. Yanovskiy, R. Yi, B. Zaar, G. Zadvitskiy, L. Zakharov, P. Zanca, D. Zarzoso, Y. Zayachuk, J. Zebrowski, M. Zerbini, P. Zestanakis, C. F. B. Zimmermann, M. Zlobinski, A. Zohar, V.K. Zotta, X. Zou, M. Zuin, M. Zurita, and I. Zychor
- Subjects
JET ,ASDEX Upgrade ,MAST-U ,TCV ,WEST ,Tokamak Exploitation Task Force ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Within the 9th European Framework programme, since 2021 EUROfusion is operating five tokamaks under the auspices of a single Task Force called ‘Tokamak Exploitation’. The goal is to benefit from the complementary capabilities of each machine in a coordinated way and help in developing a scientific output scalable to future largre machines. The programme of this Task Force ensures that ASDEX Upgrade, MAST-U, TCV, WEST and JET (since 2022) work together to achieve the objectives of Missions 1 and 2 of the EUROfusion Roadmap: i) demonstrate plasma scenarios that increase the success margin of ITER and satisfy the requirements of DEMO and, ii) demonstrate an integrated approach that can handle the large power leaving ITER and DEMO plasmas. The Tokamak Exploitation task force has therefore organized experiments on these two missions with the goal to strengthen the physics and operational basis for the ITER baseline scenario and for exploiting the recent plasma exhaust enhancements in all four devices (PEX: Plasma EXhaust) for exploring the solution for handling heat and particle exhaust in ITER and develop the conceptual solutions for DEMO. The ITER Baseline scenario has been developed in a similar way in ASDEX Upgrade, TCV and JET. Key risks for ITER such as disruptions and run-aways have been also investigated in TCV, ASDEX Upgrade and JET. Experiments have explored successfully different divertor configurations (standard, super-X, snowflakes) in MAST-U and TCV and studied tungsten melting in WEST and ASDEX Upgrade. The input from the smaller devices to JET has also been proven successful to set-up novel control schemes on disruption avoidance and detachment.
- Published
- 2024
- Full Text
- View/download PDF
10. Diagnostic weight functions in constants-of-motion phase-space
- Author
-
M. Rud, D. Moseev, F. Jaulmes, K. Bogar, J. Eriksson, H. Järleblad, M. Nocente, G. Prechel, B.C.G. Reman, B.S. Schmidt, A. Snicker, L. Stagner, A. Valentini, and M. Salewski
- Subjects
weight functions ,fast ions ,diagnostics ,constants-of-motion phase-space ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The fast-ion phase-space distribution function in axisymmetric tokamak plasmas is completely described by the three constants of motion: energy, magnetic moment and toroidal canonical angular momentum. In this work, the observable regions of constants-of-motion phase-space, given a diagnostic setup, are identified and explained using projected velocities of the fast ions along the diagnostic lines-of-sight as a proxy for several fast-ion diagnostics, such as fast-ion $\text{D}_{\alpha}$ spectroscopy, collective Thomson scattering, neutron emission spectroscopy and gamma-ray spectroscopy. The observable region in constants-of-motion space is given by a position condition and a velocity condition, and the diagnostic sensitivity is given by a gyro-orbit and a drift-orbit weighting. As a practical example, 3D orbit weight functions quantifying the diagnostic sensitivity to each point in phase-space are computed and investigated for the future COMPASS-Upgrade and MAST-Upgrade tokamaks.
- Published
- 2024
- Full Text
- View/download PDF
11. Recent progress of JT-60SA project toward plasma operation
- Author
-
H. Shirai, K. Takahashi, E. Di Pietro, D. Abate, W. Abdel Maksoud, H. Abe, N. Aiba, T. Abe, M. Akimitsu, J. Ayllon-Guerola, T. Arai, J.-F. Artaud, N. Asakura, N. Ashikawa, L. Balbinot, P. Barabaschi, O. Baulaigue, E. Belonohy, A. Belpane, W. Bin, F. Bombarda, T. Bolzonella, F. Bonne, M. Bonotto, J. Botija, J. Buermans, S. Cabrera-Pérez, A. Cardella, D. Carralero, L. Carraro, J. Cavalier, M. Cavinato, M. Chernyshova, S. Chiba, S. Clement-Lorenzo, V. Cocilovo, S. Coda, R. Coelho, I. Coffey, B. Collin, V. Corato, A. Cucchiaro, T. Czarski, M. Dairaku, S. Davis, C. Day, E. Dela Luna, G. De Tommasi, P. Decool, L. Di Pace, M. Dibon, G. Disset, F. D’Lsa, A. Ejiri, Y. Endo, N. Ezumi, G. Falchetto, A. Fassina, P. Fejoz, A. Ferro, W. Fietz, L. Figini, T. Fornal, G. Frello, T. Fujita, T. Fukuda, K. Fukui, M. Fukumoto, H. Funaba, M. Furukawa, S. Futatani, L. Gabellieri, E. Gaio, K. Galazka, J. Garcia, J. Garcia-Dominguez, J. Garcia-Lopez, M. Garcia-Munoz, L. Garzotti, F. Gasparini, S. Gharafi, L. Giacomelli, G. Ginoulhiac, G. Giruzzi, L. Giudicotti, J. Gonzalez-Martin, R. Guillén-González, N. Hajnal, S. Hall, K. Hamada, K. Hanada, M. Hanada, K. Hasegawa, S. Hatakeyama, V. Hauer, N. Hayashi, T. Hayashi, R. Heller, J. Hidalgo-Salaverri, S. Higashijima, J. Hinata, S. Hiranai, J. Hiratsuka, R. Hiwatari, C. Hoa, H. Homma, A. Honda, M. Honda, K. Hoshino, H. Hurzlmeier, M. Iafrati, K. Ibano, H. Ichige, M. Ichikawa, M. Ichimura, K. Ida, S. Ide, H. Idei, M. Iguchi, T. Iijima, S. Iio, R. Ikeda, Y. Ikeda, T. Imai, R. Imazawa, S. Inagaki, M. Inomoto, S. Inoue, A. Isayama, S. Ishida, Y. Ishii, M. Isobe, F. Janky, E. Joffrin, A. Jokinen, S. Kado, S. Kajita, K. Kajiwara, Y. Kamada, I. Kamata, A. Kaminaga, K. Kamiya, D. Kanapienyte, Y. Kashiwa, M. Kashiwagi, K. Katayama, Y. Kawamata, G. Kawamura, K. Kawano, Y. Kazakov, K. Kimura, F. Kin, M. Kisaki, S. Kitajima, K. Kiyono, K. Kizu, Y. Ko, K. Kobayashi, M. Kobayashi, S. Kobayashi, Ta. Kobayashi, To. Kobayashi, G. Kocsis, A. Kojima, S. Kokusen, M. Komata, K. Komuro, S. Konishi, A. Kovacsik, I. Ksiazek, M. Kubkowska, G. Kühner, M. Kuramochi, K. Kurihara, T. Kurki-Suonio, A.B. Kurniawan, T. Kuwata, B. Lacroix, V. Lamaison, A. Lampasi, P. Lang, P. Lauber, K. Lawson, Q. LeCoz, A. Louzguiti, R. Maekawa, T. Maekawa, S. Maeyama, G. Maffia, P. Maget, J. Mailloux, I. Maione, A. Maistrello, K. Malinowski, A. Mancini, G. Marchiori, J.-L. Marechal, V. Massaut, S. Masuzaki, R. Matoike, G. Matsunaga, S. Matsunaga, A. Matsuyama, Ch Mayri, M. Mattei, M. Medrano, A. Mele, I. Meyer, F. Michel, T. Minami, Y. Miyata, J. Miyazawa, Y. Miyo, T. Mizuuchi, K. Mogaki, J. Morales, P. Moreau, T. Morisaki, S. Morishima, S. Moriyama, A. Moro, H. Murakami, M. Murayama, S. Murakami, K. Nagasaki, O. Naito, N. Nakamura, S. Nakamura, T. Nakano, Y. Nakashima, V. Nardino, E. Narita, Y. Narushima, K. Natsume, S. Nemoto, R. Neu, S. Nicollet, M. Nishikawa, S. Nishimura, T. Nishitani, M. Nishiura, T. Nishiyama, M. Nocente, Y. Nobuta, L. Novello, F. Nunio, S. Ochoa, K. Ogawa, T. Ogawa, Y. Ogawa, S. Ohdachi, Y. Ohmori, N. Ohno, Y. Ohtani, K. Ohtsu, M. Ohzeki, T. Oishi, J. Okano, K. Okano, Y. Onishi, M. Osakabe, T. Oshima, V. Ostuni, A. Owada, M. Oya, Y. Oya, T. Ozeki, M.M. Parody Guzmán, R. Pasqualotto, S. Pelli, E. Perelli, E. Peretti, G. Phillips, C. Piccinni, L. Pigatto, A. Pironti, A. Pizzuto, B. Plöckl, G. Polli, J.-M. Poncet, P. Ponsot, G. Pucella, M. Puiatti, D. Radloff, V. Raimondi, F. Ramos, P. Rancsik, D. Ricci, S. Ricciarini, N. Richermoz, E. Rincon, A. Romano, P. Rossi, P. Roussel, G. Rubino, H. Saeki, A. Sagara, S. Sakakibara, H. Sakamoto, Miki Sakamoto, Mizu Sakamoto, Y. Sakamoto, A. Sakasai, S. Sakata, R. Sakurai, B. Salanon, A. Salmi, G. Sannazzaro, R. Sano, A. Sanpei, T. Sasajima, S. Sasaki, H. Sasao, F. Sato, M. Sato, T. Sato, M. Sawahata, A. Scherber, S. Scully, J. Segado-Fernandez, M. Seki, N. Seki, S. Seki, Y. Shibama, Y. Shibata, T. Shikama, K. Shimada, M. Shimono, J. Shinde, T. Shinya, K. Shinohara, J. Shiraishi, S. Soare, A. Soleto, Y. Someya, S. Sonoda, C. Sozzi, E. Streciwilk-Kowalska, H. Strobel, M. Sueoka, A. Sukegawa, S. Sumida, H. Suzuki, Ma Suzuki, Mi Suzuki, S. Suzuki, T. Suzuki, Y. Suzuki, J. Svoboda, T. Szabolics, T. Szepesi, Y. Takase, M. Takechi, K. Takeda, Y. Takeiri, H. Takenaga, C. Taliercio, N. Tamura, Hiro Tanaka, Hito Tanaka, K. Tanaka, Y. Tanaka, K. Tani, H. Tanigawa, M. Tardocchi, A. Terakado, M. Terakado, T. Terakado, B. Teuchner, B. Tilia, H. Tobari, H. Tobita, K. Tobita, K. Toi, N. Toida, H. Tojo, M. Tokitani, T. Tokuzawa, V. Tormarchio, M. Tomine, A. Torre, T. Totsuka, K. Tsuchiya, N. Tsujii, D. Tsuru, H. Tsutsui, M. Uchida, Y. Ueda, J. Uno, H. Urano, K. Usui, H. Utoh, M. Valisa, M. Vallar, R. Vallcorba-Carbonel, J.-C. Vallet, J. Varela, J. Vega, M. Verrecchia, L. Vieillard, F. Villone, P. Vincenzi, K. Wada, R. Wada, T. Wakatsuki, M. Wanner, F. Watanabe, K. Watanabe, S. Watanabe, T. Wauters, S. Wiesen, M. Wischmeier, M. Yagi, J. Yagyu, M. Yajima, S. Yamamoto, H. Yamanaka, K. Yamauchi, Y. Yamauchi, H. Yamazaki, K. Yamazaki, R. Yamazaki, S. Yamoto, S. Yanagi, K. Yanagihara, S. Yokooka, M. Yokoyama, T. Yokoyama, M. Yoshida, M. Yoshimura, N. Yoshizawa, K. Yuinawa, L. Zani, and P. Zito
- Subjects
JT-60SA ,superconducting tokamak ,risk mitigation measures ,integrated commissioning ,maintenance and enhancement ,international collaboration ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Superconducting (SC) tokamak JT-60SA plays an essential role in fusion research and development by supporting and complementing the ITER project, providing directions to the DEMO design activity and fostering next generation scientists and engineers. Since the short circuit incident at the terminal joints of equilibrium field coil #1 during the integrated commissioning (IC) in March 2021, both EU and JA implementing agencies (IAs) have examined how to ensure safe operation of JT-60SA by mitigating the risk of possible discharge occurrence inside the cryostat. Based on the experience of the global Paschen tests, the IAs have established a strategy of risk mitigation measures, which is a combination of (i) reinforcement of insulation, (ii) avoiding unnecessary voltage application to the coil systems and (iii) immediate de-energization of the coils when deteriorated vacuum conditions are detected. Thanks to the considerable efforts of the Integrated Project Team members, the IC restarted in May 2023. After confirmation of the SC state of the coil systems (TF, EF and CS), the coil energization test and the plasma operation phase 1 (OP-1) started. The first plasma was successfully achieved on 23 October 2023 with a limited value of voltage and current applied to the coils. The plasma configuration control was also confirmed with low plasma current and low auxiliary heating power conditions. Based on the IO–F4E–QST collaboration, activities of JT-60SA have been shared with the IO and provided an important lesson for ITER assembly and commissioning, and will provide an outstanding contribution to fusion research at large. After OP-1, maintenance & enhancement phase 1 (M/E-1) starts from January 2024, in which in-vessel components are installed, and heating and diagnostic systems are extensively upgraded to allow a high power heating experiment planned in OP-2. In order to make the best use of JT-60SA, a newly organized JT-60SA experiment team will refine the research plan for the future high heating power operation phase.
- Published
- 2024
- Full Text
- View/download PDF
12. Overview of T and D–T results in JET with ITER-like wall
- Author
-
C.F. Maggi, D. Abate, N. Abid, P. Abreu, O. Adabonyan, M. Afzal, I. Ahmad, M. Akhtar, R. Albanese, S. Aleiferis, E. Alessi, P. Aleynikov, J. Alguacil, J. Alhage, M. Ali, H. Allen, M. Allinson, M. Alonzo, E. Alves, R. Ambrosino, E. Andersson Sundén, P. Andrew, M. Angelone, C. Angioni, I. Antoniou, L. Appel, C. Appelbee, C. Aramunde, M. Ariola, G. Arnoux, G. Artaserse, J.-F. Artaud, W. Arter, V. Artigues, F.J. Artola, A. Ash, O. Asztalos, D. Auld, F. Auriemma, Y. Austin, L. Avotina, J. Ayllón, E. Aymerich, A. Baciero, L. Bähner, F. Bairaktaris, I. Balboa, M. Balden, N. Balshaw, V.K. Bandaru, J. Banks, A. Banon Navarro, C. Barcellona, O. Bardsley, M. Barnes, R. Barnsley, M. Baruzzo, M. Bassan, A. Batista, P. Batistoni, L. Baumane, B. Bauvir, L. Baylor, C. Bearcroft, P. Beaumont, D. Beckett, A. Begolli, M. Beidler, N. Bekris, M. Beldishevski, E. Belli, F. Belli, S. Benkadda, J. Bentley, E. Bernard, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, H. Betar, M. Beurskens, P.G. Bhat, S. Bickerton, J. Bielecki, T. Biewer, R. Bilato, P. Bílková, G. Birkenmeier, R. Bisson, J.P.S. Bizarro, P. Blatchford, A. Bleasdale, V. Bobkov, A. Boboc, A. Bock, G. Bodnar, P. Bohm, L. Bonalumi, N. Bonanomi, D. Bonfiglio, X. Bonnin, P. Bonofiglo, J. Booth, D. Borba, D. Borodin, I. Borodkina, T.O.S.J. Bosman, C. Bourdelle, M. Bowden, I. Božičević Mihalić, S.C. Bradnam, B. Breizman, S. Brezinsek, D. Brida, M. Brix, P. Brown, D. Brunetti, M. Buckley, J. Buermans, H. Bufferand, P. Buratti, A. Burckhart, A. Burgess, A. Buscarino, A. Busse, D. Butcher, G. Calabrò, L. Calacci, R. Calado, R. Canavan, B. Cannas, M. Cannon, M. Cappelli, S. Carcangiu, P. Card, A. Cardinali, S. Carli, P. Carman, D. Carnevale, B. Carvalho, I.S. Carvalho, P. Carvalho, I. Casiraghi, F.J. Casson, C. Castaldo, J.P. Catalan, N. Catarino, F. Causa, M. Cavedon, M. Cecconello, L. Ceelen, C.D. Challis, B. Chamberlain, R. Chandra, C.S. Chang, A. Chankin, B. Chapman, P. Chauhan, M. Chernyshova, A. Chiariello, G.-C. Chira, P. Chmielewski, A. Chomiczewska, L. Chone, J. Cieslik, G. Ciraolo, D. Ciric, J. Citrin, Ł. Ciupinski, R. Clarkson, M. Cleverly, P. Coates, V. Coccorese, R. Coelho, J.W. Coenen, I.H. Coffey, A. Colangeli, L. Colas, J. Collins, S. Conroy, C. Contré, N.J. Conway, D. Coombs, P. Cooper, S. Cooper, L. Cordaro, C. Corradino, Y. Corre, G. Corrigan, D. Coster, T. Craciunescu, S. Cramp, D. Craven, R. Craven, G. Croci, D. Croft, K. Crombé, T. Cronin, N. Cruz, A. Cufar, A. Cullen, A. Dal Molin, S. Dalley, P. David, A. Davies, J. Davies, S. Davies, G. Davis, K. Dawson, S. Dawson, I. Day, G. De Tommasi, J. Deane, M. Dearing, M. De Bock, J. Decker, R. Dejarnac, E. Delabie, E. de la Cal, E. de la Luna, D. Del Sarto, A. Dempsey, W. Deng, A. Dennett, G.L. Derks, G. De Temmerman, F. Devasagayam, P. de Vries, P. Devynck, A. di Siena, D. Dickinson, T. Dickson, M. Diez, P. Dinca, T. Dittmar, L. Dittrich, J. Dobrashian, T. Dochnal, A.J.H. Donné, W. Dorland, S. Dorling, S. Dormido-Canto, R. Dotse, D. Douai, S. Dowson, R. Doyle, M. Dreval, P. Drews, G. Drummond, Ph. Duckworth, H.G. Dudding, R. Dumont, P. Dumortier, D. Dunai, T. Dunatov, M. Dunne, I. Ďuran, F. Durodié, R. Dux, T. Eade, E. Eardley, J. Edwards, T. Eich, A. Eksaeva, H. El-Haroun, R.D. Ellis, G. Ellwood, C. Elsmore, S. Emery, G. Ericsson, B. Eriksson, F. Eriksson, J. Eriksson, L.G. Eriksson, S. Ertmer, G. Evans, S. Evans, E. Fable, D. Fagan, M. Faitsch, D. Fajardo Jimenez, M. Falessi, A. Fanni, T. Farmer, I. Farquhar, B. Faugeras, S. Fazinić, N. Fedorczak, K. Felker, R. Felton, H. Fernandes, D.R. Ferreira, J. Ferreira, G. Ferrò, J. Fessey, O. Février, O. Ficker, A.R. Field, A. Figueiredo, J. Figueiredo, A. Fil, N. Fil, P. Finburg, U. Fischer, G. Fishpool, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, S. Foley, N. Fonnesu, M. Fontana, J.M. Fontdecaba, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, C. Fowler, P. Fox, O. Franklin, E. Fransson, L. Frassinetti, R. Fresa, D. Frigione, T. Fülöp, M. Furseman, S. Gabriellini, D. Gadariya, S. Gadgil, K. Gál, S. Galeani, A. Galkowski, D. Gallart, M. Gambrioli, T. Gans, J. Garcia, M. García-Muñoz, L. Garzotti, J. Gaspar, R. Gatto, P. Gaudio, D. Gear, T. Gebhart, S. Gee, M. Gelfusa, R. George, S.N. Gerasimov, R. Gerru, G. Gervasini, M. Gethins, Z. Ghani, M. Gherendi, P.-I. Gherghina, F. Ghezzi, L. Giacomelli, C. Gibson, L. Gil, M.R. Gilbert, A. Gillgren, E. Giovannozzi, C. Giroud, G. Giruzzi, J. Goff, V. Goloborodko, R. Gomes, J.-F. Gomez, B. Gonçalves, M. Goniche, J. Gonzalez-Martin, A. Goodyear, S. Gore, G. Gorini, T. Görler, N. Gotts, E. Gow, J.P. Graves, J. Green, H. Greuner, E. Grigore, F. Griph, W. Gromelski, M. Groth, C. Grove, R. Grove, N. Gupta, S. Hacquin, L. Hägg, A. Hakola, M. Halitovs, J. Hall, C.J. Ham, M. Hamed, M.R. Hardman, Y. Haresawa, G. Harrer, J.R. Harrison, D. Harting, D.R. Hatch, T. Haupt, J. Hawes, N.C. Hawkes, J. Hawkins, S. Hazael, J. Hearmon, P. Heesterman, P. Heinrich, M. Held, W. Helou, O. Hemming, S.S. Henderson, R. Henriques, R.B. Henriques, D. Hepple, J. Herfindal, G. Hermon, J.C. Hillesheim, K. Hizanidis, A. Hjalmarsson, A. Ho, J. Hobirk, O. Hoenen, C. Hogben, A. Hollingsworth, S. Hollis, E. Hollmann, M. Hölzl, M. Hook, M. Hoppe, J. Horáček, N. Horsten, A. Horton, L.D. Horton, L. Horvath, S. Hotchin, Z. Hu, Z. Huang, E. Hubenov, A. Huber, V. Huber, T. Huddleston, G.T.A. Huijsmans, Y. Husain, P. Huynh, A. Hynes, D. Iglesias, M.V. Iliasova, M. Imríšek, J. Ingleby, P. Innocente, V. Ioannou-Sougleridis, N. Isernia, I. Ivanova-Stanik, E. Ivings, S. Jachmich, T. Jackson, A.S. Jacobsen, P. Jacquet, H. Järleblad, A. Järvinen, F. Jaulmes, N. Jayasekera, F. Jenko, I. Jepu, E. Joffrin, T. Johnson, J. Johnston, C. Jones, E. Jones, G. Jones, L. Jones, T.T.C. Jones, A. Joyce, M. Juvonen, A. Kallenbach, P. Kalnina, D. Kalupin, P. Kanth, A. Kantor, A. Kappatou, O. Kardaun, J. Karhunen, E. Karsakos, Ye.O. Kazakov, V. Kazantzidis, D.L. Keeling, W. Kelly, M. Kempenaars, D. Kennedy, K. Khan, E. Khilkevich, C. Kiefer, H.-T. Kim, J. Kim, S.H. Kim, D.B. King, D.J. Kinna, V.G. Kiptily, A. Kirjasuo, K.K. Kirov, A. Kirschner, T. Kiviniemi, G. Kizane, C. Klepper, A. Klix, G. Kneale, M. Knight, P. Knight, R. Knights, S. Knipe, U. Knoche, M. Knolker, M. Kocan, F. Köchl, G. Kocsis, J.T.W. Koenders, Y. Kolesnichenko, Y. Kominis, M. Kong, B. Kool, V. Korovin, S.B. Korsholm, B. Kos, D. Kos, M. Koubiti, Y. Kovtun, E. Kowalska-Strzęciwilk, K. Koziol, Y. Krasikov, A. Krasilnikov, V. Krasilnikov, M. Kresina, A. Kreter, K. Krieger, A. Krivska, U. Kruezi, I. Książek, H. Kumpulainen, B. Kurzan, S. Kwak, O.J. Kwon, B. Labit, M. Lacquaniti, A. Lagoyannis, L. Laguardia, A. Laing, V. Laksharam, N. Lam, H.T. Lambertz, B. Lane, M. Langley, E. Lascas Neto, E. Łaszyńska, K.D. Lawson, A. Lazaros, E. Lazzaro, G. Learoyd, C. Lee, K. Lee, S. Leerink, T. Leeson, X. Lefebvre, H.J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, F. Leipold, I. Lengar, M. Lennholm, E. Leon Gutierrez, L.A. Leppin, E. Lerche, A. Lescinskis, S. Lesnoj, L. Lewin, J. Lewis, J. Likonen, Ch. Linsmeier, X. Litaudon, E. Litherland-Smith, F. Liu, T. Loarer, A. Loarte, R. Lobel, B. Lomanowski, P.J. Lomas, J. Lombardo, R. Lorenzini, S. Loreti, V.P. Loschiavo, M. Loughlin, T. Lowe, C. Lowry, T. Luce, R. Lucock, T. Luda Di Cortemiglia, M. Lungaroni, C.P. Lungu, T. Lunt, V. Lutsenko, B. Lyons, J. Macdonald, E. Macusova, R. Mäenpää, H. Maier, J. Mailloux, S. Makarov, P. Manas, A. Manning, P. Mantica, M.J. Mantsinen, J. Manyer, A. Manzanares, Ph. Maquet, M. Maraschek, G. Marceca, G. Marcer, C. Marchetto, O. Marchuk, A. Mariani, G. Mariano, M. Marin, A. Marin Roldan, M. Marinelli, T. Markovič, L. Marot, C. Marren, S. Marsden, S. Marsen, J. Marsh, R. Marshall, L. Martellucci, A.J. Martin, C. Martin, R. Martone, S. Maruyama, M. Maslov, M. Mattei, G.F. Matthews, D. Matveev, E. Matveeva, A. Mauriya, F. Maviglia, M. Mayer, M.-L. Mayoral, S. Mazzi, C. Mazzotta, R. McAdams, P.J. McCarthy, P. McCullen, R. McDermott, D.C. McDonald, D. McGuckin, V. McKay, L. McNamee, A. McShee, D. Mederick, M. Medland, S. Medley, K. Meghani, A.G. Meigs, S. Meitner, S. Menmuir, K. Mergia, S. Mianowski, P. Middleton, J. Mietelski, K. Mikszuta-Michalik, D. Milanesio, E. Milani, E. Militello-Asp, F. Militello, J. Milnes, A. Milocco, S. Minucci, I. Miron, J. Mitchell, J. Mlynář, V. Moiseenko, P. Monaghan, I. Monakhov, A. Montisci, S. Moon, R. Mooney, S. Moradi, R.B. Morales, L. Morgan, F. Moro, J. Morris, T. Mrowetz, L. Msero, S. Munot, A. Muñoz-Perez, M. Muraglia, A. Murari, A. Muraro, B. N’Konga, Y.S. Na, F. Nabais, R. Naish, F. Napoli, E. Nardon, V. Naulin, M.F.F. Nave, R. Neu, S. Ng, M. Nicassio, D. Nicolai, A.H. Nielsen, S.K. Nielsen, D. Nina, C. Noble, C.R. Nobs, M. Nocente, H. Nordman, S. Nowak, H. Nyström, J. O’Callaghan, M. O’Mullane, C. O’Neill, C. Olde, H.J.C. Oliver, R. Olney, J. Ongena, G.P. Orsitto, A. Osipov, R. Otin, N. Pace, L.W. Packer, E. Pajuste, D. Palade, J. Palgrave, O. Pan, N. Panadero, T. Pandya, E. Panontin, A. Papadopoulos, G. Papadopoulos, G. Papp, V.V. Parail, A. Parsloe, K. Paschalidis, M. Passeri, A. Patel, A. Pau, G. Pautasso, R. Pavlichenko, A. Pavone, E. Pawelec, C. Paz-Soldan, A. Peacock, M. Pearce, I.J. Pearson, E. Peluso, C. Penot, K. Pepperell, A. Perdas, T. Pereira, E. Perelli Cippo, C. Perez von Thun, D. Perry, P. Petersson, G. Petravich, N. Petrella, M. Peyman, L. Pigatto, M. Pillon, S. Pinches, G. Pintsuk, C. Piron, A. Pironti, F. Pisano, R. Pitts, U. Planck, N. Platt, V. Plyusnin, M. Podesta, G. Pokol, F.M. Poli, O.G. Pompilian, M. Poradzinski, M. Porkolab, C. Porosnicu, G. Poulipoulis, A.S. Poulsen, I. Predebon, A. Previti, D. Primetzhofer, G. Provatas, G. Pucella, P. Puglia, K. Purahoo, O. Putignano, T. Pütterich, A. Quercia, G. Radulescu, V. Radulovic, R. Ragona, M. Rainford, P. Raj, M. Rasinski, D. Rasmussen, J. Rasmussen, J.J. Rasmussen, A. Raso, G. Rattá, S. Ratynskaia, R. Rayaprolu, M. Rebai, A. Redl, D. Rees, D. Réfy, R. Reichle, H. Reimerdes, B.C.G. Reman, C. Reux, S. Reynolds, D. Rigamonti, E. Righi, F.G. Rimini, J. Risner, J.F. Rivero-Rodriguez, C.M. Roach, J. Roberts, R. Robins, S. Robinson, D. Robson, S. Rode, P. Rodrigues, P. Rodriguez-Fernandez, S. Romanelli, J. Romazanov, E. Rose, C. Rose-Innes, R. Rossi, S. Rowe, D. Rowlands, C. Rowley, M. Rubel, G. Rubinacci, G. Rubino, M. Rud, J. Ruiz Ruiz, F. Ryter, S. Saarelma, A. Sahlberg, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, F. Sanchez, I. Sanders, D. Sandiford, F. Sanni, O. Sauter, P. Sauvan, G. Schettini, A. Shevelev, A.A. Schekochihin, K. Schmid, B.S. Schmidt, S. Schmuck, M. Schneider, P.A. Schneider, N. Schoonheere, R. Schramm, D. Scoon, S. Scully, M. Segato, J. Seidl, L. Senni, J. Seo, G. Sergienko, M. Sertoli, S.E. Sharapov, R. Sharma, A. Shaw, R. Shaw, H. Sheikh, U. Sheikh, N. Shi, P. Shigin, D. Shiraki, G. Sias, M. Siccinio, B. Sieglin, S.A. Silburn, A. Silva, C. Silva, J. Silva, D. Silvagni, D. Simfukwe, J. Simpson, P. Sirén, A. Sirinelli, H. Sjöstrand, N. Skinner, J. Slater, T. Smart, R.D. Smirnov, N. Smith, P. Smith, T. Smith, J. Snell, L. Snoj, E.R. Solano, V. Solokha, C. Sommariva, K. Soni, M. Sos, J. Sousa, C. Sozzi, T. Spelzini, F. Spineanu, L. Spolladore, D. Spong, C. Srinivasan, G. Staebler, A. Stagni, I. Stamatelatos, M.F. Stamp, Ž. Štancar, P.A. Staniec, G. Stankūnas, M. Stead, B. Stein-Lubrano, A. Stephen, J. Stephens, P. Stevenson, C. Steventon, M. Stojanov, D.A. St-Onge, P. Strand, S. Strikwerda, C.I. Stuart, S. Sturgeon, H.J. Sun, S. Surendran, W. Suttrop, J. Svensson, J. Svoboda, R. Sweeney, G. Szepesi, M. Szoke, T. Tadić, B. Tal, T. Tala, P. Tamain, K. Tanaka, W. Tang, G. Tardini, M. Tardocchi, D. Taylor, A.S. Teimane, G. Telesca, A. Teplukhina, A. Terra, D. Terranova, N. Terranova, D. Testa, B. Thomas, V.K. Thompson, A. Thorman, A.S. Thrysoe, W. Tierens, R.A. Tinguely, A. Tipton, H. Todd, M. Tomeš, A. Tookey, P. Tsavalas, D. Tskhakaya, L.-P. Turică, A. Turner, I. Turner, M. Turner, M.M. Turner, G. Tvalashvili, A. Tykhyy, S. Tyrrell, A. Uccello, V. Udintsev, A. Vadgama, D.F. Valcarcel, A. Valentini, M. Valisa, M. Vallar, M. Valovic, M. Van Berkel, K.L. van de Plassche, M. van Rossem, D. Van Eester, J. Varela, J. Varje, T. Vasilopoulou, G. Vayakis, M. Vecsei, J. Vega, M. Veis, P. Veis, S. Ventre, M. Veranda, G. Verdoolaege, C. Verona, G. Verona Rinati, E. Veshchev, N. Vianello, E. Viezzer, L. Vignitchouk, R. Vila, R. Villari, F. Villone, P. Vincenzi, A. Vitins, Z. Vizvary, M. Vlad, I. Voldiner, U. Von Toussaint, P. Vondráček, B. Wakeling, M. Walker, R. Walker, M. Walsh, R. Walton, E. Wang, F. Warren, R. Warren, J. Waterhouse, C. Watts, T. Webster, M. Weiland, H. Weisen, M. Weiszflog, N. Wendler, A. West, M. Wheatley, S. Whetham, A. Whitehead, D. Whittaker, A. Widdowson, S. Wiesen, M. Willensdorfer, J. Williams, I. Wilson, T. Wilson, M. Wischmeier, A. Withycombe, D. Witts, A. Wojcik-Gargula, E. Wolfrum, R. Wood, R. Woodley, R. Worrall, I. Wyss, T. Xu, D. Yadykin, Y. Yakovenko, Y. Yang, V. Yanovskiy, R. Yi, I. Young, R. Young, B. Zaar, R.J. Zabolockis, L. Zakharov, P. Zanca, A. Zarins, D. Zarzoso Fernandez, K.-D. Zastrow, Y. Zayachuk, M. Zerbini, W. Zhang, B. Zimmermann, M. Zlobinski, A. Zocco, V.K. Zotta, M. Zuin, W. Zwingmann, and I. Zychor
- Subjects
magnetic fusion ,JET-ILW ,D–T ,tritium ,alpha particles ,fusion prediction ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In 2021 JET exploited its unique capabilities to operate with T and D–T fuel with an ITER-like Be/W wall (JET-ILW). This second major JET D–T campaign (DTE2), after DTE1 in 1997, represented the culmination of a series of JET enhancements—new fusion diagnostics, new T injection capabilities, refurbishment of the T plant, increased auxiliary heating, in-vessel calibration of 14 MeV neutron yield monitors—as well as significant advances in plasma theory and modelling in the fusion community. DTE2 was complemented by a sequence of isotope physics campaigns encompassing operation in pure tritium at high T-NBI power. Carefully conducted for safe operation with tritium, the new T and D–T experiments used 1 kg of T (vs 100 g in DTE1), yielding the most fusion reactor relevant D–T plasmas to date and expanding our understanding of isotopes and D–T mixture physics. Furthermore, since the JET T and DTE2 campaigns occurred almost 25 years after the last major D–T tokamak experiment, it was also a strategic goal of the European fusion programme to refresh operational experience of a nuclear tokamak to prepare staff for ITER operation. The key physics results of the JET T and DTE2 experiments, carried out within the EUROfusion JET1 work package, are reported in this paper. Progress in the technological exploitation of JET D–T operations, development and validation of nuclear codes, neutronic tools and techniques for ITER operations carried out by EUROfusion (started within the Horizon 2020 Framework Programme and continuing under the Horizon Europe FP) are reported in (Litaudon et al Nucl. Fusion accepted), while JET experience on T and D–T operations is presented in (King et al Nucl. Fusion submitted).
- Published
- 2024
- Full Text
- View/download PDF
13. Orbit tomography in constants-of-motion phase-space
- Author
-
M. Rud, D. Moseev, F. Jaulmes, K. Bogar, Y. Dong, P.C. Hansen, J. Eriksson, H. Järleblad, M. Nocente, G. Prechel, B.C.G. Reman, B.S. Schmidt, A. Snicker, L. Stagner, A. Valentini, and M. Salewski
- Subjects
fast ions ,diagnostics ,tomography ,orbits ,constants of motion ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Tomographic reconstructions of a 3D fast-ion constants-of-motion phase-space distribution function are computed by inverting synthetic signals based on projected velocities of the fast ions along the diagnostic lines of sight. A spectrum of projected velocities is a key element of the spectrum formation in fast-ion D-alpha spectroscopy, collective Thomson scattering, and gamma-ray and neutron emission spectroscopy, and it can hence serve as a proxy for any of these. The fast-ion distribution functions are parameterised by three constants of motion, the kinetic energy, the magnetic moment and the toroidal canonical angular momentum. The reconstructions are computed using both zeroth-order and first-order Tikhonov regularisation expressed in terms of Bayesian inference to allow uncertainty quantification. In addition to this, a discontinuity appears to be present in the solution across the trapped-passing boundary surface in the three-dimensional phase space due to a singularity in the Jacobian of the transformation from position and velocity space to phase space. A method to allow for this apparent discontinuity while simultaneously penalising large gradients in the solution is demonstrated. Finally, we use our new methods to optimise the diagnostic performance of a set of six fans of sightlines by finding where the detectors contribute most complementary diagnostic information for the future COMPASS-Upgrade tokamak.
- Published
- 2024
- Full Text
- View/download PDF
14. Observation of alpha-particles in recent D–T experiments on JET
- Author
-
V.G. Kiptily, C.D. Challis, R. Dumont, M. Fitzgerald, J. Garcia, L. Garzotti, Z. Ghani, J. Hobirk, P. Jacquet, A. Kappatou, D. Keeling, Ye. Kazakov, P. Mantica, M.J. Mantsinen, S.E. Sharapov, E.R. Solano, D. Van Eester, P.J. Bonofiglo, T. Craciunescu, A. Dal Molin, J. Eriksson, V. Goloborodko, M.V. Iliasova, E.M. Khilkevitch, D. King, I. Lengar, M. Nocente, S. Menmuir, M. Podestà, M. Poradzinski, D. Rigamonti, J. Rivero-Rodriguez, Z. Stancar, A.E. Shevelev, P. Siren, H. Sun, D.M. Taylor, M. Tardocchi, P. Beaumont, F. Belli, F.E. Cecil, R. Coelho, M. Curuia, M. Garcia-Munoz, E. Joffrin, C. Lowry, M. Lennholm, E. Lerche, C.F. Maggi, J. Mailloux, D. Marocco, M. Maslov, C. Perez Von Thun, F. Rimini, V. Zoita, and JET Contributors
- Subjects
JET ,DT-plasmas ,fusion ,alpha-particles ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The fusion reaction between deuterium and tritium, D ( T,n ) ^4 He is the main source of energy in future thermonuclear reactors. Alpha-particles ( ^4 He -ions) born with an average energy of 3.5 MeV transferring energy to the thermal plasma during their slowing down, should provide the self-sustained D–T plasma burn. The adequate confinement of α -particles is essential to provide efficient heating of the bulk plasma and steady burning of a reactor plasma. That is why the fusion-born α -particle studies have been a priority task in the second D–T experiments (DTE2) on the Joint European Torus (JET) to understand the main mechanisms of their slowing down, redistribution and losses and to develop optimal plasma scenarios. JET with Be -wall and W -divertor, enhanced auxiliary heating systems and improved energetic-particle diagnostic capabilities, producing significant population of α -particles, provided the possibility for comprehensive studying of the α -particle behaviour. Selected results of the confined and lost α -particle measurements, evidence of α -particle self-heating and assessments of the fusion performance are presented in this paper giving an opportunity for further modelling and extrapolation to the International Thermonuclear Experimental Reactor and burning plasma reactors.
- Published
- 2024
- Full Text
- View/download PDF
15. Detection of alpha heating in JET-ILW DT plasmas by a study of the electron temperature response to ICRH modulation
- Author
-
P. Mantica, F. Auriemma, I. Casiraghi, D. Gallart, K. Kirov, E. Lerche, A. Salmi, A. Dal Molin, E. Delabie, J. Eriksson, J. Garcia, P. Huynh, P. Jacquet, T. Jonsson, V. Kiptily, E. Litherland–Smith, C.F. Maggi, M. Mantsinen, G. Marcer, M. Maslov, S. Menmuir, M. Nocente, E. Peluso, G. Pucella, D. Rigamonti, Z. Stancar, H. Sun, G. Szepesi, M. Tardocchi, D. Van Eester, and JET Contributors
- Subjects
tokamak ,DT plasmas ,alpha heating ,ICRH modulation ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In the JET DTE2 campaign a new method was successfully tested to detect the heating of bulk electrons by α-particles, using the dynamic response of the electron temperature T _e to the modulation of ion cyclotron resonance heating (ICRH). A fundamental deuterium (D) ICRH scheme was applied to a tritium-rich hybrid plasma with D-neutral beam injection (NBI). The modulation of the ion temperature T _i and of the ICRH accelerated deuterons leads to modulated α -heating with a large delay with respect to other modulated electron heating terms. A significant phase delay of ∼40° is measured between central T _e and T _i , which can only be explained by α -particle heating. Integrated modelling using different models for ICRH absorption and ICRH/NBI interaction reproduces the effect qualitatively. Best agreement with experiment is obtained with the European Transport Solver/Heating and Current Drive workflow.
- Published
- 2024
- Full Text
- View/download PDF
16. Divertor Tokamak Test facility project: status of design and implementation
- Author
-
Francesco Romanelli, on behalf of DTT Contributors, D. Abate, E. Acampora, D. Agguiaro, R. Agnello, P. Agostinetti, M. Agostini, A. Aimetta, R. Albanese, G. Alberti, M. Albino, E. Alessi, S. Almaviva, M. Alonzo, R. Ambrosino, P. Andreoli, M. Angelone, M. Angelucci, C. Angioni, A. Angrisani Armenio, P. Antonini, D. Aprile, G. Apruzzese, M. Aquilini, G. Aragone, P. Arena, M. Ariola, G. Artaserse, L. Aucone, A. Augieri, F. Auriemma, J. Ayllon Guerola, N. Badodi, B. Baiocchi, L. Balbinot, C. Baldacchini, A. Balestri, T. Barberis, G. Barone, L. Barucca, M. Baruzzo, S. Begozzi, V. Belardi, F. Belli, A. Belpane, F. Beone, S. Bertolami, S. Bianucci, S. Bifaretti, S. Bigioni, W. Bin, P. Boccali, B. Boeswirth, E. Bogazzi, R. Bojoi, S. Bollanti, T. Bolzonella, F. Bombarda, M. Bonan, N. Bonanomi, A. Bonaventura, L. Boncagni, M. Bonesso, D. Bonfiglio, R. Bonifetto, D. Bonomi, D. Borgogno, T. Borzone, S. Botti, E. Boz, F. Braghin, M. Brena, S. Brezinsek, M. Brombin, A. Bruschi, S. Buonocore, P. Buratti, D. Busi, G. Calabrò, M. Caldora, G. Calvo, G. Camera, G. Campana, S. Candela, V. Candela, F. Cani, L. Cantone, F. Capaldo, S. Cappello, M. Caponero, S. Carchella, A. Cardinali, D. Carnevale, L. Carraro, C. Carrelli, V. Casalegno, I. Casiraghi, C. Castaldo, A. Castaldo, G. Castro, A. Carpignano, F. Causa, R. Cavazzana, M. Cavedon, M. Cavenago, M. Cecchini, S. Ceccuzzi, G. Celentano, L. Celona, C. Centioli, G.V. Centomani, S. Cesaroni, A.G. Chiariello, R. Chomicz, C. Cianfarani, F. Cichocki, M. Cinque, A. Cioffi, M. Ciotti, M. Cipriani, S. Ciufo, V. Claps, G. Claps, V. Coccorese, D. Coccorese, A. Colangeli, T. Coltella, F. Consoli, F. Cordella, D. Corradini, O. Costa, F. Crea, A. Cremona, F. Crescenzi, F. Crisanti, G. Cristofari, G. Croci, A. Cucchiaro, D. D’Ambrosio, M. Dal Molin, M. Dalla Palma, F. Danè, C. Day, M. De Angeli, V. De Leo, R. De Luca, E. De Marchi, G. De Marzi, G. De Masi, E. De Nardi, C. De Piccoli, G. De Sano, M. De Santis, G. De Tommasi, A. Del Nevo, A. Delfino, A. Della Corte, P. Deodati, S. Desiderati, E. Di Ferdinando, M.G. Di Florio, G. Di Gironimo, L.E. Di Grazia, V. Di Marzo, F. Di Paolo, E. Di Pietro, M. Di Pietrantonio, M. Di Prinzio, A. Di Silvestre, A. Di Zenobio, R. Dima, A. Domenichelli, A. Doria, G. Dose, S. Dubbioso, S. Dulla, I. Duran, M. Eboli, M. Elitropi, E. Emanuelli, B. Esposito, P. Ettorre, C. Fabbri, F. Fabbri, M. Fadone, M.M. Faggiano, F. Falcioni, M.V. Falessi, F. Fanale, P. Fanelli, A. Fassina, M. Favaretto, G. Favero, M. Ferraris, F. Ferrazza, C. Ferretti, A. Ferro, N. Ferron, C. Fiamozzi Zignani, L. Figini, F. Filippi, M. Filippini, A. Fimiani, M. Fincato, F. Fiorenza, D. Fiorucci, D. Flammini, F. Flora, N. Fonnesu, P. Franz, L. Frassinetti, A. Frattolillo, R. Freda, R. Fresa, A. Frescura, P. Frosi, M. Fulici, M. Furno Palumbo, V. Fusco, P. Fusco, L. Gabellier, P. Gaetani, E. Gaio, E. Gajetti, A. Galatà, J. Galdon Quiroga, D.L. Galindo Huertas, S. Gammino, G. Gandolfo, S. Garavaglia, J. Garcia Lopez, M. Garcia Muñoz, P. Gaudio, M. Gelfusa, G. Gervasini, L. Giannini, M. Giarrusso, C. Gil, F. Giorgetti, E. Giovannozzi, G. Giruzzi, L. Giudicotti, M. Gobbin, G. Gorini, G. Granucci, D. Grasso, T. Grasso, S. Grazioso, H. Greuner, G. Griva, G. Grosso, S. Guerini, J.P. Gunn, V. Hauer, J. Hidalgo Salaverri, M. Hoppe, M. Houry, M. Hoelzl, A. Iaboni, M. Iafrati, A. Iaiunese, V. Imbriani, D. Indrigo, P. Innocente, F. Koechl, B. Končar, A. Kryzhanovskyy, L. Laguardia, D.A. Lampasi, C. Lanchi, F. Lanzotti, A. Lanzotti, M. Laquaniti, F. Leone, J. Li, M. Libè, F. Lisanti, D. Liuzza, F. Locati, R. Lombroni, R. Lorenzini, P. Lorusso, L. Lotto, J. Loureiro, F. Lucca, T. Luda Di Cortemiglia, P. Maccari, G. Maddaluno, S. Magagnino, G. Manca, A. Mancini, P. Mandalà, B. Mandolesi, F. Mandrile, G. Manduchi, S. Manfrin, M. Manganelli, P. Mantica, G. Marchiori, N. Marconato, G. Marelli, A. Mariani, A. Marin, R. Marinari, M. Marinelli, F. Marino, P. Marino, D. Marocco, R. Marsilio, E. Martelli, P. Martin, F. Martinelli, G. Martini, R. Martone, A. Marucci, D. Marzullo, V. Masala, D. Mascali, F. Mascari, A. Masi, N. Massanova, S. Mastrostefano, M. Mattei, G. Mauro, S. Mauro, C. Meineri, L. Melaragni, A. Mele, P. Meller, S. Meloni, I. Menicucci, G. Messina, L. Mezi, G. Miccichè, M. Micheletti, S. Migliori, D. Milanesio, F. Milazzo, R. Milazzo, P. Minelli, S. Minucci, F. Mirizzi, M. Missirlian, D. Monarca, C. Monti, M. Mori, A. Moriani, L. Morici, A. Moro, F. Moro, P. Mosetti, R. Mozzillo, A. Murari, A. Muraro, D. Murra, P. Muscente, S. Musumeci, L. Muzzi, G.F. Nallo, F. Napoli, E. Nardon, E. Naselli, R. Neu, M. Nocente, M. Notazio, S. Nowak, E. Ocello, A. Oliva, V. Orsetti, A. Orsini, F.P. Orsitto, M. Ortino, M. Ottavi, G. Paccagnella, D. Pacella, I. Pagani, N. Paganucci, A. Pagliaro, V. Palazzolo, M. Palermo, S. Palomba, F. Panza, D. Paoletti, M. Parisi, R. Pasqualotto, S. Passarello, M. Passoni, T. Patton, L. Pelliccia, A. Peloso, A. Pepato, E. Perelli, A. Perencin, S. Peruzzo, A. Pesenti, N. Pedroni, P. Petrolini, V. Piergotti, A. Pidatella, L. Pigatto, M. Pillon, T. Pinna, S. Pipolo, S. Piras, C. Piron, L. Piron, A. Pironti, M. Pistilli, D. Placido, A. Pizzuto, P. Platania, A. Polimadei, F. Pollastrone, G.M. Polli, N. Pomaro, F. Pompili, C. Ponti, F. Porcelli, V. Prandelli, A. Previti, A. Princiotta, G. Pucino, F. Quaglia, A. Quercia, F. Raffaelli, G. Ramogida, G. Ranieri, B. Raspante, D. Ravarotto, G.L. Ravera, A. Reale, P. Rebesan, M. Recchia, D. Regine, F. Renno, B. Riccardi, D. Ricci, D. Rigamonti, M. Ripani, N. Rispoli, S. Roccella, G. Rocchi, H. Roche, M. Romanato, F. Romanelli, G. Romanelli, R. Romaniello, A. Romano, M. Romano, R. Romano, R. Rossi, G. Rubinacci, G. Rubino, S. Rubino, J. Rueda Rueda, A. Rufoloni, C. Salvia, P. Salvini, M. Scarpari, A. Salvitti, L. Salvò, S. Sandri, F. Santoro, A. Satriano, L. Savoldi, C. Scardino, G. Schettini, S. Schmuck, J. Scionti, M. Scisciò, M. Scungio, K. Sedlak, L. Senni, G. Sias, A. Sibio, A. Simonetto, L. Singh, A. Sirignano, C. Sozzi, I. Spada, S. Spagnolo, L. Spinicci, G. Spizzo, M. Spolaore, C. Stefanini, H. Strobel, F. Subba, F. Taccogna, B. Taheri, C. Tantos, A. Tarallo, M. Tarantino, G. Tardini, M. Tardocchi, P. Tarfila, A. Tenaglia, C. Terlizzi, D. Terranova, D. Testa, E. Testa, R. Testoni, V. Toigo, G. Torrisi, A. Trotta, G. Trovato, E. Tsitrone, A. Tuccillo, O. Tudisco, M. Turcato, S. Turtù, A. Uccello, M. Ugoletti, O. Uras, M. Uras, M. Utili, V. Vaccaro, F. Valentini, L. Valletti, M. Valisa, D. Van Eester, D. Vanzan, E. Vassallo, G. Vecchi, M. Vellucci, I. Venneri, G. Ventura, M. Veranda, L. Verdini, C. Verona, G. Verona Rinati, F. Veronese, N. Vianello, F. Viganò, O. Villano, R. Villari, F. Villone, P. Vincenzi, V. Vitale, F. Vivio, G. Vlad, M. Wischmeier, H.S. Wu, I. Wyss, R. Zanino, B. Zaniol, F. Zanon, A. Zappatore, G. Zavarise, P. Zito, A. Zoppoli, M. Zucchetti, M. Zuin, and P. Zumbolo
- Subjects
divertor ,exhaust ,plasma scenarios ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
An overview is presented of the progress since 2021 in the construction and scientific programme preparation of the Divertor Tokamak Test (DTT) facility. Licensing for building construction has been granted at the end of 2021. Licensing for Cat. A radiologic source has been also granted in 2022. The construction of the toroidal field magnet system is progressing. The prototype of the 170 GHz gyrotron has been produced and it is now under test on the FALCON facility. The design of the vacuum vessel, the poloidal field coils and the civil infrastructures has been completed. The shape of the first DTT divertor has been agreed with EUROfusion to test different plasma and exhaust scenarios: single null, double null, X-divertor and negative triangularity plasmas. A detailed research plan is being elaborated with the involvement of the EUROfusion laboratories.
- Published
- 2024
- Full Text
- View/download PDF
17. Alpha particle loss measurements and analysis in JET DT plasmas
- Author
-
P.J. Bonofiglo, V.G. Kiptily, J. Rivero-Rodriguez, M. Nocente, M. Podestà, Ž. Štancar, M. Poradzinski, V. Goloborodko, S.E. Sharapov, M. Fitzgerald, R. Dumont, J. Garcia, D. Keeling, D. Frigione, L. Garzotti, F.G. Rimini, D. Van Eester, E. Lerche, M. Maslov, and JET Contributors
- Subjects
alpha particles ,alpha physics ,DT plasmas ,fast ion losses ,MHD ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Burning reactor plasmas will be self-heated by fusion born alpha particles from deuterium-tritium reactions. Consequently, a thorough understanding of the confinement and transport of DT-born alpha particles is necessary to maintain the plasma self-heating. Measurements of fast ion losses provide a direct means to monitor alpha particle confinement. JET’s 2021–2022 second experimental DT-campaign offers burning plasma scenarios with advanced fast ion loss diagnostics for the first time in nearly 25 years. Coherent and non-coherent alpha losses were observed due to a variety of low frequency MHD activity. This manuscript will present the loss mechanisms, spatial and pitch dependencies, scalings with plasma parameters, correlations with wall impurities, and magnitude of DT-alpha born losses.
- Published
- 2024
- Full Text
- View/download PDF
18. Physics basis for the divertor tokamak test facility
- Author
-
F. Crisanti, R. Ambrosino, M.V. Falessi, L. Gabellieri, G. Giruzzi, G. Granucci, P. Innocente, P. Mantica, G. Ramogida, G. Vlad, R. Albanese, E. Alessi, C. Angioni, P. Agostinetti, L. Aucone, F. Auriemma, B. Baiocchi, L. Balbinot, A. Balestri, T. Barberis, M. Baruzzo, T. Bolzonella, N. Bonanomi, D. Bonfiglio, S. Brezinsek, G. Calabrò, F. Cani, I. Casiraghi, A. Castaldo, C. Castaldo, M. Cavedon, S. Ceccuzzi, F. Cichocki, M. Ciotti, C. Day, C. De Piccoli, G. Dose, E. Emanueli, L. Frassinetti, L. Figini, V. Fusco, E. Giovannozzi, M. Gobbin, F. Koechi, A. Kryzhanovskyy, Y. Li, R. Lombroni, T. Luda, A. Mariani, P. Martin, C. Meineri, A. Murari, P. Muscente, F. Napoli, E. Nardon, R. Neu, M. Nocente, M. Notazio, S. Nowak, L. Pigatto, C. Piron, F. Porcelli, S. Roccella, G. Rubino, M. Scarpari, C. Sozzi, G. Spizzo, F. Subba, F. Taccogna, C. Tantos, D. Terranova, E. Tsitrone, A. Uccello, D. Van Eester, N. Vianello, P. Vincenzi, M. Wischmeier, and F. Zonca
- Subjects
plasma ,experiment ,theory ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
This paper is dealing with the physics basis used for the design of the Divertor Tokamak Test facility (DTT), under construction in Frascati (DTT 2019 DTT interim design report (2019)) Italy, and with the description of the main target plasma scenarios of the device. The main goal of the facility will be the study of the power exhaust, intended as a fully integrated core-edge problem, and eventually to propose an optimized divertor for the European DEMO plant. The approach used to design the facility is described and their main features are reported, by using simulations performed by state-of-the-art codes both for the bulk and edge studies. A detailed analysis of MHD, including also the possibility to study disruption events and Energetic Particles physics is also reported. Eventually, a description of the ongoing work to build-up a Research Plan written and shared by the full EUROfusion community is presented.
- Published
- 2024
- Full Text
- View/download PDF
19. Experimental research on the TCV tokamak
- Author
-
B.P. Duval, A. Abdolmaleki, M. Agostini, C.J. Ajay, S. Alberti, E. Alessi, G. Anastasiou, Y. Andrèbe, G.M. Apruzzese, F. Auriemma, J. Ayllon-Guerola, F. Bagnato, A. Baillod, F. Bairaktaris, L. Balbinot, A. Balestri, M. Baquero-Ruiz, C. Barcellona, M. Bernert, W. Bin, P. Blanchard, J. Boedo, T. Bolzonella, F. Bombarda, L. Boncagni, M. Bonotto, T.O.S.J. Bosman, D. Brida, D. Brunetti, J. Buchli, J. Buerman, P. Buratti, A. Burckhart, D. Busil, J. Caloud, Y. Camenen, A. Cardinali, S. Carli, D. Carnevale, F. Carpanese, M. Carpita, C. Castaldo, F. Causa, J. Cavalier, M. Cavedon, J.A. Cazabonne, J. Cerovsky, B. Chapman, M. Chernyshova, P. Chmielewski, A. Chomiczewska, G. Ciraolo, S. Coda, C. Colandrea, C. Contré, R. Coosemans, L. Cordaro, S. Costea, T. Craciunescu, K. Crombe, A. Dal Molin, O. D’Arcangelo, D. de Las Casas, J. Decker, J. Degrave, H. de Oliveira, G.L. Derks, L.E. di Grazia, C. Donner, M. Dreval, M.G. Dunne, G. Durr-Legoupil-Nicoud, B. Esposito, T. Ewalds, M. Faitsch, M. Farník, A. Fasoli, F. Felici, J. Ferreira, O. Février, O. Ficker, A. Frank, E. Fransson, L. Frassinetti, L. Fritz, I. Furno, D. Galassi, K. Gałązka, J. Galdon-Quiroga, S. Galeani, C. Galperti, S. Garavaglia, M. Garcia-Munoz, P. Gaudio, M. Gelfusa, J. Genoud, R. Gerrú Miguelanez, G. Ghillardi, M. Giacomin, L. Gil, A. Gillgren, C. Giroud, T. Golfinopoulos, T. Goodman, G. Gorini, S. Gorno, G. Grenfell, M. Griener, M. Gruca, T. Gyergyek, R. Hafner, M. Hamed, D. Hamm, W. Han, G. Harrer, J.R. Harrison, D. Hassabis, S. Henderson, P. Hennequin, J. Hidalgo-Salaverri, J-P. Hogge, M. Hoppe, J. Horacek, A. Huber, E. Huett, A. Iantchenko, P. Innocente, C. Ionita-Schrittwieser, I. Ivanova Stanik, M. Jablczynska, A. Jansen van Vuuren, A. Jardin, H. Järleblad, A.E. Järvinen, J. Kalis, R. Karimov, A.N. Karpushov, K. Kavukcuoglu, J. Kay, Y. Kazakov, J. Keeling, A. Kirjasuo, J.T.W. Koenders, P. Kohli, M. Komm, M. Kong, J. Kovacic, E. Kowalska-Strzeciwilk, O. Krutkin, O. Kudlacek, U. Kumar, R. Kwiatkowski, B. Labit, L. Laguardia, E. Laszynska, A. Lazaros, K. Lee, E. Lerche, B. Linehan, D. Liuzza, T. Lunt, E. Macusova, D. Mancini, P. Mantica, M. Maraschek, G. Marceca, S. Marchioni, A. Mariani, M. Marin, A. Marinoni, L. Martellucci, Y. Martin, P. Martin, L. Martinelli, F. Martinelli, J.R. Martin-Solis, S. Masillo, R. Masocco, V. Masson, A. Mathews, M. Mattei, D. Mazon, S. Mazzi, S.Y. Medvedev, C. Meineri, A. Mele, V. Menkovski, A. Merle, H. Meyer, K. Mikszuta-Michalik, I.G. Miron, P.A. Molina Cabrera, A. Moro, A. Murari, P. Muscente, D. Mykytchuk, F. Nabais, F. Napoli, R.D. Nem, M. Neunert, S.K. Nielsen, A. Nielsen, M. Nocente, S. Noury, S. Nowak, H. Nyström, N. Offeddu, S. Olasz, F. Oliva, D.S. Oliveira, F.P. Orsitto, N. Osborne, P. Oyola Dominguez, O. Pan, E. Panontin, A.D. Papadopoulos, P. Papagiannis, G. Papp, M. Passoni, F. Pastore, A. Pau, R.O. Pavlichenko, A.C. Pedersen, M. Pedrini, G. Pelka, E. Peluso, A. Perek, C. Perez Von Thun, F. Pesamosca, D. Pfau, V. Piergotti, L. Pigatto, C. Piron, L. Piron, A. Pironti, U. Plank, V. Plyusnin, Y.R.J. Poels, G.I. Pokol, J. Poley-Sanjuan, M. Poradzinski, L. Porte, C. Possieri, A. Poulsen, M.J. Pueschel, T. Pütterich, V. Quadri, M. Rabinski, R. Ragona, H. Raj, A. Redl, H. Reimerdes, C. Reux, D. Ricci, M. Riedmiller, S. Rienäcker, D. Rigamonti, N. Rispoli, J.F. Rivero-Rodriguez, C.F. Romero Madrid, J. Rueda Rueda, P.J. Ryan, M. Salewski, A. Salmi, M. Sassano, O. Sauter, N. Schoonheere, R.W. Schrittwieser, F. Sciortino, A. Selce, L. Senni, S. Sharapov, U.A. Sheikh, B. Sieglin, M. Silva, D. Silvagni, B. Simmendefeldt Schmidt, L. Simons, E.R. Solano, C. Sozzi, M. Spolaore, L. Spolladore, A. Stagni, P. Strand, G. Sun, W. Suttrop, J. Svoboda, B. Tal, T. Tala, P. Tamain, M. Tardocchi, A. Tema Biwole, A. Tenaglia, D. Terranova, D. Testa, C. Theiler, A. Thornton, A.S. Thrysoe, M. Tomes, E. Tonello, H. Torreblanca, B. Tracey, M. Tsimpoukelli, C. Tsironis, C.K. Tsui, M. Ugoletti, M. Vallar, M. van Berkel, S. van Mulders, M. van Rossem, C. Venturini, M. Veranda, T. Verdier, K. Verhaegh, L. Vermare, N. Vianello, E. Viezzer, F. Villone, B. Vincent, P. Vincenzi, I. Voitsekhovitch, L. Votta, N.M.T. Vu, Y. Wang, E. Wang, T. Wauters, M. Weiland, H. Weisen, N. Wendler, S. Wiesen, M. Wiesenberger, T. Wijkamp, C. Wüthrich, D. Yadykin, H. Yang, V. Yanovskiy, J. Zebrowski, P. Zestanakis, M. Zuin, and M. Zurita
- Subjects
TCV ,review ,plasma ,SPC ,EPFL ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Tokamak à configuration variable (TCV), recently celebrating 30 years of near-continual operation, continues in its missions to advance outstanding key physics and operational scenario issues for ITER and the design of future power plants such as DEMO. The main machine heating systems and operational changes are first described. Then follow five sections: plasma scenarios. ITER Base-Line (IBL) discharges, triangularity studies together with X3 heating and N2 seeding. Edge localised mode suppression, with a high radiation region near the X-point is reported with N _2 injection with and without divertor baffles in a snowflake configuration. Negative triangularity (NT) discharges attained record, albeit transient, β _N ∼ 3 with lower turbulence, higher low-Z impurity transport, vertical stability and density limits and core transport better than the IBL. Positive triangularity L-Mode linear and saturated ohmic confinement confinement saturation, often-correlated with intrinsic toroidal rotation reversals, was probed for D, H and He working gases. H-mode confinement and pedestal studies were extended to low collisionality with electron cyclotron heating obtaining steady state electron iternal transport barrier with neutral beam heating (NBH), and NBH driven H-mode configurations with off-axis co-electron cyclotron current drive. Fast particle physics. The physics of disruptions, runaway electrons and fast ions (FIs) was developed using near-full current conversion at disruption with recombination thresholds characterised for impurity species (Ne, Ar, Kr). Different flushing gases (D2, H2) and pathways to trigger a benign disruption were explored. The 55 kV NBH II generated a rich Alfvénic spectrum modulating the FI fas ion loss detector signal. NT configurations showed less toroidal Alfvén excitation activity preferentially affecting higher FI pitch angles. Scrape-off layer and edge physics. gas puff imaging systems characterised turbulent plasma ejection for several advanced divertor configurations, including NT. Combined diagnostic array divertor state analysis in detachment conditions was compared to modelling revealing an importance for molecular processes. Divertor physics. Internal gas baffles diversified to include shorter/longer structures on the high and/or low field side to probe compressive efficiency. Divertor studies concentrated upon mitigating target power, facilitating detachment and increasing the radiated power fraction employing alternative divertor geometries, optimised X-point radiator regimes and long-legged configurations. Smaller-than-expected improvements with total flux expansion were better modelled when including parallel flows. Peak outer target heat flux reduction was achieved (>50%) for high flux-expansion geometries, maintaining core performance ( H _98 > 1). A reduction in target heat loads and facilitated detachment access at lower core densities is reported. Real-time control. TCV’s real-time control upgrades employed MIMO gas injector control of stable, robust, partial detachment and plasma β feedback control avoiding neoclassical tearing modes with plasma confinement changes. Machine-learning enhancements include trajectory tracking disruption proximity and avoidance as well as a first-of-its-kind reinforcement learning-based controller for the plasma equilibrium trained entirely on a free-boundary simulator. Finally, a short description of TCV’s immediate future plans will be given.
- Published
- 2024
- Full Text
- View/download PDF
20. 'We are prisoners, not inmates': prison letters as liminal counter-carceral spaces
- Author
-
M. Nocente
- Subjects
Human ecology. Anthropogeography ,GF1-900 ,Geography (General) ,G1-922 ,Cartography ,GA101-1776 - Abstract
The question of porousness and liminality of prison has been the subject of a huge amount of research. This article focuses on the relationships, communications, and narratives that occur behind prison walls. It examines letter writing in relation to the construction of a bridge that connects the opacity of the inside with the outside, creating a counter-carceral liminal space. The article investigates the encounter between the outside, represented in OLGa (the political collective in which I participate), and the inside (the prisoners) through the process of letter writing. The article further draws upon my own positionality through an engaged discussion on the limitations of scholar activism and the problem of speaking for others.
- Published
- 2021
- Full Text
- View/download PDF
21. JET D-T scenario with optimized non-thermal fusion
- Author
-
M. Maslov, E. Lerche, F. Auriemma, E. Belli, C. Bourdelle, C.D. Challis, A. Chomiczewska, A. Dal Molin, J. Eriksson, J. Garcia, J. Hobirk, I. Ivanova-Stanik, Ph. Jacquet, A. Kappatou, Y. Kazakov, D.L. Keeling, D.B. King, V. Kiptily, K. Kirov, D. Kos, R. Lorenzini, E. De La Luna, C.F. Maggi, J. Mailloux, P. Mantica, M. Marin, G. Matthews, I. Monakhov, M. Nocente, G. Pucella, D. Rigamonti, F. Rimini, S. Saarelma, M. Salewski, E.R. Solano, Ž. Štancar, G. Stankunas, H. Sun, M. Tardocchi, D. Van Eester, and JET Contributors
- Subjects
tokamak ,nuclear fusion ,tritium ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in the ion cyclotron range of frequencies (ICRFs). To complement the experiments with 50/50 D/T mixtures maximizing thermonuclear reactivity, a scenario with dominant non-thermal reactivity has been developed and successfully demonstrated during the second JET deuterium-tritium campaign DTE2, as it was predicted to generate the highest fusion power in JET with a Be/W wall. It was performed in a 15/85 D/T mixture with pure D-NBI heating combined with ICRF heating at the fundamental deuterium resonance. In steady plasma conditions, a record 59 MJ of fusion energy has been achieved in a single pulse, of which 50.5 MJ were produced in a 5 s time window ( P _fus = 10.1 MW) with average Q = 0.33, confirming predictive modelling in preparation of the experiment. The highest fusion power in these experiments, P _fus = 12.5 MW with average Q = 0.38, was achieved over a shorter 2 s time window, with the period of sustainment limited by high-Z impurity accumulation. This scenario provides unique data for the validation of physics-based models used to predict D-T fusion power.
- Published
- 2023
- Full Text
- View/download PDF
22. Experiments on excitation of Alfvén eigenmodes by alpha-particles with bump-on-tail distribution in JET DTE2 plasmas
- Author
-
S.E. Sharapov, H.J.C. Oliver, J. Garcia, D.L. Keeling, M. Dreval, V. Goloborod’Ko, Ye.O. Kazakov, V.G. Kiptily, Ž. Štancar, P.J. Bonofiglo, R. Coelho, T. Craciunescu, J. Ferreira, A. Figueiredo, N. Fil, M. Fitzgerald, F. Nabais, M. Nocente, P.G. Puglia, J. Rivero-Rodriguez, P. Rodrigues, M. Salewski, R.A. Tinguely, L.E. Zakharov, and JET Contributors
- Subjects
DT ,alpha-particles ,Alfven ,JET ,plasma ,fusion ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Dedicated experiments were performed in JET DTE2 plasmas for obtaining an α -particle bump-on-tail (BOT) distribution aiming at exciting Alfvén eigenmodes (AEs). Neutral beam injection-only heating with modulated power was used so that fusion-born α -particles were the only ions present in the MeV energy range in these DT plasmas. The beam power modulation on a time scale shorter than the α -particle slowing down time was chosen for modulating the α -particle source and thus sustaining a BOT in the α -particle distribution. High-frequency modes in the toroidicity-induced Alfven eigenmode (TAE) frequency range and multiple short-lived modes in a wider frequency range have been detected in these DT discharges with interferometry, soft x-ray cameras, and reflectometry. The modes observed were localised close to the magnetic axis, and were not seen in the Mirnov coils. Analysis with the TRANSP and Fokker-Planck FIDIT codes confirms that α -particle distributions with BOT in energy were achieved during some time intervals in these discharges though no clear correlation was found between the times of the high-frequency mode excitation and the BOT time intervals. The combined magneto-hydrodynamic (MHD) and kinetic modelling studies show that the high-frequency mode in the TAE frequency range is best fitted with a TAE of toroidal mode number n = 9. This mode is driven mostly by the on-axis beam ions while the smaller drive due to the pressure gradient of α -particles allows overcoming the marginal stability and exciting the mode (Oliver et al 2023 Nucl. Fusion submitted). The observed multiple short-lived modes in a wider frequency range are identified as the on-axis kinetic AEs predicted in Rosenbluth and Rutherford (1975 Phys. Rev. Lett. 34 1428).
- Published
- 2023
- Full Text
- View/download PDF
23. Experiments in high-performance JET plasmas in preparation of second harmonic ICRF heating of tritium in ITER
- Author
-
M.J. Mantsinen, P. Jacquet, E. Lerche, D. Gallart, K. Kirov, P. Mantica, D. Taylor, D. Van Eester, M. Baruzzo, I. Carvalho, C.D. Challis, A. Dal Molin, E. Delabie, E. De La Luna, R. Dumont, P. Dumortier, J. Eriksson, D. Frigione, J. Garcia, L. Garzotti, C. Giroud, R. Henriques, J. Hobirk, A. Kappatou, Y. Kazakov, D. Keeling, D. King, V. Kiptily, M. Lennholm, P. Lomas, C. Lowry, C.F. Maggi, J. Mailloux, M. Maslov, S. Menmuir, I. Monakhov, R.B. Morales, C. Noble, M. Nocente, A. Patel, G. Pucella, C. Reux, D. Rigamonti, F. Rimini, A. Sheikh, S. Silburn, P. Siren, E.R. Solano, Z. Stancar, M. Tardocchi, and JET Contributors
- Subjects
ICRF heating ,fast ions ,computational modelling ,JET tokamak ,H-mode hybrid plasma scenario ,deuterium–tritium fuel mixture ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium–tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of T and ^3 He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3 T. Experiments have been carried out in the second major D-T campaign (DTE2) at JET, and in its prior D campaigns, to integrate these ICRF scenarios in JET high-performance plasmas and to compare their performance with the commonly used hydrogen (H) minority heating. In 50:50 D:T plasmas, up to 35% and 5% larger fusion power and diamagnetic energy content, respectively, were obtained with second harmonic heating of T as compared to H minority heating at comparable total input powers and gas injection rates. The core ion temperature was up to 30% and 20% higher with second harmonic T and ^3 He minority heating, respectively, with respect to H minority heating. These are favourable results for the use of these scenarios in ITER and future fusion reactors. According to modelling, adding ICRF heating to neutral beam injection using D and T beams resulted in a 10%–20% increase of on-axis bulk ion heating in the D-T plasmas due to its localisation in the plasma core. Central power deposition was confirmed with the break-in-slope and fast Fourier transform analysis of ion and electron temperature in response to ICRF modulation. The tail temperature of fast ICRF-accelerated tritons, their enhancement of the fusion yield and time behaviour as measured by an upgraded magnetic proton recoil spectrometer and neutral particle analyser were found in agreement with theoretical predictions. No losses of ICRF-accelerated ions were observed by fast ion detectors, which was as expected given the high plasma density of n _e ≈ 7–8 × 10 ^19 m ^−3 in the main heating phase that limited the formation of ICRF-accelerated fast ion tails. ^3 He was introduced in the machine by ^3 He gas injection, and the ^3 He concentration was measured by a high-resolution optical penning gauge in the sub-divertor region. The DTE2 experiments with ^3 He minority heating were carried with a low ^3 He concentration in the range of 2%–4% given the fact that the highest neutron rates with ^3 He minority heating in D plasmas were obtained at low ^3 He concentrations of ∼2%, which also coincided with the highest plasma diamagnetic energy content. In addition to ^3 He introduced by ^3 He gas injection, an intrinsic concentration of ^3 He of the order of 0.2%–0.4% was measured in D-T plasmas before ^3 He was introduced in the device, which is attributed to the radioactive decay of tritium to ^3 He. According to modelling, even such low intrinsic concentrations of ^3 He lead to significant changes in ICRF power partitioning during second harmonic heating of T due to absorption of up to 30% of the wave power by ^3 He.
- Published
- 2023
- Full Text
- View/download PDF
24. Modelling performed for predictions of fusion power in JET DTE2: overview and lessons learnt
- Author
-
J. Garcia, F.J. Casson, L. Frassinetti, D. Gallart, L. Garzotti, H.-T. Kim, M. Nocente, S. Saarelma, F. Auriemma, J. Ferreira, S. Gabriellini, A. Ho, P. Huynh, K.K. Kirov, E. Lerche, M.J. Mantsinen, V.K. Zotta, Z. Stancar, D.M.A. Taylor, D. Van Eester, C.D. Challis, and JET Contributors
- Subjects
tokamak ,fusion ,modelling ,JET ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
For more than a decade, an unprecedented predict-first activity has been carried in order to predict the fusion power and provide guidance to the second Deuterium–Tritium (D–T) campaign performed at JET in 2021 (DTE2). Such an activity has provided a framework for a broad model validation and development towards the D–T operation. It is shown that it is necessary to go beyond projections using scaling laws in order to obtain detailed physics based predictions. Furthermore, mixing different modelling complexity and promoting an extended interplay between modelling and experiment are essential towards reliable predictions of D–T plasmas. The fusion power obtained in this predict-first activity is in broad agreement with the one finally measured in DTE2. Implications for the prediction of fusion power in future devices, such as ITER, are discussed.
- Published
- 2023
- Full Text
- View/download PDF
25. Overview of interpretive modelling of fusion performance in JET DTE2 discharges with TRANSP
- Author
-
Ž. Štancar, K.K. Kirov, F. Auriemma, H.-T. Kim, M. Poradziński, R. Sharma, R. Lorenzini, Z. Ghani, M. Gorelenkova, F. Poli, A. Boboc, S. Brezinsek, P. Carvalho, F.J. Casson, C.D. Challis, E. Delabie, D. Van Eester, M. Fitzgerald, J.M. Fontdecaba, D. Gallart, J. Garcia, L. Garzotti, C. Giroud, A. Kappatou, Ye.O. Kazakov, D.B. King, V.G. Kiptily, D. Kos, E. Lerche, E. Litherland-Smith, C.F. Maggi, P. Mantica, M.J. Mantsinen, M. Maslov, S. Menmuir, M. Nocente, H.J.C. Oliver, S.E. Sharapov, P. Sirén, E.R. Solano, H.J. Sun, G. Szepesi, and JET Contributors
- Subjects
deuterium-tritium plasma ,integrated modelling ,fusion performance ,JET ,TRANSP ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. The main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and to understand the performance driving mechanisms. We find that interpretive simulations confirm a general power-law relationship between increasing external heating power and fusion output, which is supported by absolutely calibrated neutron yield measurements. A comparison of measured and computed D-T neutron rates shows that the calculations’ discrepancy depends on the absolute neutron yield. The calculations are found to agree well with measurements for higher performing discharges with external heating power above ∼20 $\mathrm{MW}$ , while low-neutron shots display an average discrepancy of around +40% compared to measured neutron yields. A similar trend is found for the ratio between thermal and beam-target fusion, where larger discrepancies are seen in shots with dominant beam-driven performance. We compare the observations to studies of JET-ILW D discharges, to find that on average the fusion performance is well modelled over a range of heating power, although an increased unsystematic deviation for lower-performing shots is observed. The ratio between thermal and beam-induced D-T fusion is found to be increasing weakly with growing external heating power, with a maximum value of $\gtrsim$ 1 achieved in a baseline scenario experiment. An evaluation of the fusion power computational uncertainty shows a strong dependence on the plasma scenario type and fusion drive characteristics, varying between ±25% and 35%. D-T fusion alpha simulations show that the ratio between volume-integrated electron and ion heating from alphas is $\lesssim$ 10 for the majority of analysed discharges. Alphas are computed to contribute between ∼15% and 40% to the total electron heating in the core of highest performing D-T discharges. An alternative workflow to TRANSP was employed to model JET D-T plasmas with the highest fusion yield and dominant non-thermal fusion component because of the use of fundamental radio-frequency heating of a large minority in the scenario, which is calculated to have provided ∼10% to the total fusion power.
- Published
- 2023
- Full Text
- View/download PDF
26. The single crystal diamond-based diagnostic suite of the JET tokamak for 14 MeV neutron counting and spectroscopy measurements in DT plasmas
- Author
-
D. Rigamonti, A. Dal Molin, A. Muraro, M. Rebai, L. Giacomelli, G. Gorini, M. Nocente, E. Perelli Cippo, S. Conroy, G. Ericsson, J. Eriksson, V. Kiptily, Z. Ghani, Ž. Štancar, M. Tardocchi, and JET Contributors
- Subjects
nuclear diagnostics ,neutron spectroscopy ,single crystal diamond detectors ,tokamaks ,nuclear fusion diagnostics ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The Joint European Torus (JET) has recently conducted its second deuterium–tritium (DT) experimental campaign DTE2, providing unique opportunity for studying both physics and engineering aspects of nuclear fusion plasmas. This also allowed the exploitation of new diagnostics and technologies that were not available during the first JET DT campaign held in 1997. Among these new instruments, the enhancement projects of the JET nuclear diagnostics lead to the development and installation of synthetic single crystal diamond detectors along different collimated line of sights. This paper describes the single crystal diamond-based diagnostic suite of the JET tokamak and the enhanced 14 MeV neutron diagnostic capabilities in terms of neutron yield and high resolution neutron spectroscopy. The diamond characterization measurements and the calibration procedure at JET are shown, together with performance of the diamond based neutron spectrometer as 14 MeV neutron yield monitor which allows the separation of 2.5 MeV and 14 MeV neutrons in trace tritium plasmas. The first high-resolution 14 MeV neutron spectroscopy measurements in neutral beam injection-heated DT plasmas are presented, allowing thermal and non-thermal neutron component separation. Prospects for the diagnose of DT burning plasmas such as ITER and SPARC will be presented.
- Published
- 2023
- Full Text
- View/download PDF
27. Parametric study of Alfvénic instabilities driven by runaway electrons during the current quench in DIII-D
- Author
-
A. Lvovskiy, C. Paz-Soldan, N.W. Eidietis, A. Dal Molin, G.H. DeGrandchamp, E.M. Hollmann, J.B. Lestz, C. Liu, M. Nocente, D. Shiraki, and X.D. Du
- Subjects
runaway electrons ,kinetic instabilities ,tokamak disruptions ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
To avoid or mitigate runaway electron (RE) beams in ITER, RE-driven instabilities are actively studied as a complimentary technique to massive material injection. In this work we report experimental dependencies of Alfvénic instabilities driven by REs during the current quench in DIII-D on plasma and material injection parameters. These instabilities, observed in the frequency range of 0.1–3 MHz, correlate with increased RE loss and thus may play a role in non-sustained RE beams. It was found that as the toroidal magnetic field ( $B_\mathrm {T}$ ) decreases, the RE population becomes more energetic, the energy of instabilities increases, and no RE beam is observed when the maximum energy of REs exceeds 15 MeV (or when $B_\mathrm {T}$ is below 1.8 T). Analysis of disruptions at plasma core temperature ( $T_\mathrm {e}$ ) of 1 keV and 8 keV shows that the RE population is much less energetic (with the maximum energy of only about 3 MeV) when $T_\mathrm {e}$ is high, and no instabilities are observed in this case. Besides disruptions above caused by Ar injection, cases with Ne and D _2 injections were also studied. Both Ne and D _2 injections cause no sustained RE beams, however, for different reasons. Measurements of the instability polarization indicate that it is of predominantly compressional nature at the edge, which is consistent with modeling suggesting excitation of compressional Alfvén eigenmodes. However, drive of global Alfvén eigenmodes is also possible at low frequencies.
- Published
- 2023
- Full Text
- View/download PDF
28. 4D and 5D phase-space tomography using slowing-down physics regularization
- Author
-
B.S. Schmidt, M. Salewski, D. Moseev, M. Baquero-Ruiz, P.C. Hansen, J. Eriksson, O. Ford, G. Gorini, H. Järleblad, Ye O. Kazakov, D. Kulla, S. Lazerson, J.E. Mencke, D. Mykytchuk, M. Nocente, P. Poloskei, M. Rud, A. Snicker, L. Stagner, S. Äkäslompolo, and the W7-X Team
- Subjects
fast ions ,tomography ,slowing-down ,NBI ,Tokamak ,stellarator ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
We compute reconstructions of 4D and 5D fast-ion phase-space distribution functions in fusion plasmas from synthetic projections of these functions. The fast-ion phase-space distribution functions originating from neutral beam injection (NBI) at TCV and Wendelstein 7-X (W7-X) at full, half, and one-third injection energies can be distinguished and particle densities of each component inferred based on 20 synthetic spectra of projected velocities at TCV and 680 at W7-X. Further, we demonstrate that an expansion into a basis of slowing-down distribution functions is equivalent to regularization using slowing-down physics as prior information. Using this technique in a Tikhonov formulation, we infer the particle density fractions for each NBI energy for each NBI beam from synthetic measurements, resulting in six unknowns at TCV and 24 unknowns at W7-X. Additionally, we show that installing 40 LOS in each of 17 ports at W7-X, providing full beam coverage and almost full angle coverage, produces the highest quality reconstructions.
- Published
- 2023
- Full Text
- View/download PDF
29. Conceptual design of a GEM (gas electron multiplier) based gas Cherenkov detector for measurement of 17 MeV gamma rays from T(D, γ)5He in magnetic confinement fusion plasmas
- Author
-
O. Putignano, G. Croci, A. Muraro, S. Cancelli, F. Caruggi, G. Gorini, G. Grosso, M. H. Kushoro, G. Marcer, M. Nocente, E. Perelli Cippo, M. Rebai, D. Rigamonti, M. Tardocchi, Putignano, O, Croci, G, Muraro, A, Cancelli, S, Caruggi, F, Gorini, G, Grosso, G, Kushoro, M, Marcer, G, Nocente, M, Cippo, E, Rebai, M, Rigamonti, D, and Tardocchi, M
- Subjects
Cherenkov detector, Gas Electron Multiplier ,Instrumentation - Abstract
The only method for assessing the fusion power throughput of a deuterium–tritium (DT) reactor presently relies on determining the absolute number of 14 MeV neutrons produced in the DT plasma. An independent method, developed and investigated during the recent DT campaign at the Joint European Torus, is based on the absolute counting of 17 MeV gamma rays produced by the competing T(D, γ)5He reaction that features a very weak branching ratio (about 3–6 × 10−6) when compared to the main T(D, n)4He reaction. The state-of-the-art spectrometer used for gamma-ray measurements in magnetic confinement fusion plasmas is LaBr3(Ce) scintillator detectors, although they require significant neutron shielding to extract a relatively weak gamma-ray signal from a much more abundant neutron field. A better approach relies on a gamma-ray detector that is intrinsically insensitive to neutrons. We have advanced the design of a gamma-ray counter based on the Cherenkov effect for gamma-rays whose energy exceeds 11 MeV, optimized to work in the neutron-rich environment of a steady-state, magnetically confined fusion plasma device. The gamma-rays interact with an aluminum window and extract electrons that move into the radiator emitting photons via the Cherenkov effect. Since the Cherenkov light consists of few photons (25 on average) in the far UV band (100–200 nm), a pre-amplifier is required to transport the photons to the neutron-shielded location, which may be a few meters away, where the readout elements of the detector, either a silicon or standard photomultiplier tube, are placed. The present work focuses on the development of a scintillating GEM (Gas Electron Multiplier) based pre-amplifier that acts as a Cherenkov photon pre-amplifier and wavelength shifter. This paper presents the result of a set of Garfield++ simulations developed to find the optimal GEM working parameters. A photon gain of 100 is obtained by biasing a single GEM foil to 1 kV.
- Published
- 2023
30. Upgrades to the gamma ray imager on DIII-D enabling access to high flux hard x-ray measurements during the runaway electron plateau phase (invited)
- Author
-
A. Lvovskiy, C. Paz-Soldan, N. Eidietis, A. Dal Molin, M. Nocente, C. Cooper, D. Rigamonti, M. Tardocchi, D. Taussig, Lvovskiy, A, Paz-Soldan, C, Eidietis, N, Dal Molin, A, Nocente, M, Cooper, C, Rigamonti, D, Tardocchi, M, and Taussig, D
- Subjects
Runaway electron, hard x-ray ,Instrumentation - Abstract
The Gamma Ray Imager (GRI) is a pinhole camera providing 2D imaging of MeV hard x-ray (HXR) bremsstrahlung emission from runaway electrons (REs) over the poloidal cross section of the DIII-D tokamak. We report a series of upgrades to the GRI expanding the access to RE scenarios from the diagnosis of a trace amount of REs to high flux HXR measurements during the RE plateau phase. We present the implementation of novel gamma ray detectors based on LYSO and YAP crystals coupled to multi-pixel photon counters, enabling a count rate in excess of 1 MHz. Finally, we highlight new insights into the RE physics discovered during the current quench and RE plateau phase experiments as the result of these upgrades.
- Published
- 2022
31. Simulations of neutral beam injection and ion cyclotron resonance heating synergy in high power EAST scenarios
- Author
-
D. K. Yang, L. Y. Liao, Y. H. Li, G. Q. Zhong, X. J. Zhang, W. Zhang, B. L. Hao, L. Q. Hu, B. N. Wan, Z. M. Hu, Y. M. Zhang, G. Gorini, M. Nocente, M. Tardocchi, X. Q. Li, C. J. Xiao, T. S. Fan, Yang, D, Liao, L, Li, Y, Zhong, G, Zhang, X, Zhang, W, Hao, B, Hu, L, Wan, B, Hu, Z, Zhang, Y, Gorini, G, Nocente, M, Tardocchi, M, Li, X, Xiao, C, and Fan, T
- Subjects
Neutral beam injection, nuclear fusion ,Instrumentation - Abstract
The EAST plasmas heated with deuterium neutral beam injection and ion cyclotron resonance heating (ICRH) have been simulated by the TRANSP code. The analysis has been conducted using the full wave solver TORIC5, the radio frequency (RF)-kick operator, and NUBEAM to model the RF heating effects on fast ion velocity distribution. In this work, we present several simulated results compared with experiments for high power EAST scenarios, indicating that the interactions between ICRH and fast ions can significantly accelerate fast ions, which are confirmed by the increased neutron yield and broadened neutron emission spectrum measurements.
- Published
- 2022
32. Global scaling of the heat transport in fusion plasmas
- Author
-
Sara Moradi, Johan Anderson, Michele Romanelli, Hyun-Tae Kim, JET contributors, X. Litaudon, S. Abduallev, M. Abhangi, P. Abreu, M. Afzal, K. M. Aggarwal, T. Ahlgren, J. H. Ahn, L. Aho-Mantila, N. Aiba, M. Airila, R. Albanese, V. Aldred, D. Alegre, E. Alessi, P. Aleynikov, A. Alfier, A. Alkseev, M. Allinson, B. Alper, E. Alves, G. Ambrosino, R. Ambrosino, L. Amicucci, V. Amosov, E. Andersson Sundén, M. Angelone, M. Anghel, C. Angioni, L. Appel, C. Appelbee, P. Arena, M. Ariola, H. Arnichand, S. Arshad, A. Ash, N. Ashikawa, V. Aslanyan, O. Asunta, F. Auriemma, Y. Austin, L. Avotina, M. D. Axton, C. Ayres, M. Bacharis, A. Baciero, D. Baião, S. Bailey, A. Baker, I. Balboa, M. Balden, N. Balshaw, R. Bament, J. W. Banks, Y. F. Baranov, M. A. Barnard, D. Barnes, M. Barnes, R. Barnsley, A. Baron Wiechec, L. Barrera Orte, M. Baruzzo, V. Basiuk, M. Bassan, R. Bastow, A. Batista, P. Batistoni, R. Baughan, B. Bauvir, L. Baylor, B. Bazylev, J. Beal, P. S. Beaumont, M. Beckers, B. Beckett, A. Becoulet, N. Bekris, M. Beldishevski, K. Bell, F. Belli, M. Bellinger, É. Belonohy, N. Ben Ayed, N. A. Benterman, H. Bergsȧker, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, C. Besliu, M. Beurskens, B. Bieg, J. Bielecki, T. Biewer, M. Bigi, P. Bìlkovà, F. Binda, A. Bisoffi, J. P. S. Bizarro, C. Björkas, J. Blackburn, K. Blackman, T. R. Blackman, P. Blanchard, P. Blatchford, V. Bobkov, A. Boboc, G. Bodnàr, O. Bogar, I. Bolshakova, T. Bolzonella, N. Bonanomi, F. Bonelli, J. Boom, J. Booth, D. Borba, D. Borodin, I. Borodkina, A. Botrugno, C. Bottereau, P. Boulting, C. Bourdelle, M. Bowden, C. Bower, C. Bowman, T. Boyce, C. Boyd, H. J. Boyer, J. M. A. Bradshaw, V. Braic, R. Bravanec, B. Breizman, S. Bremond, P. D. Brennan, S. Breton, A. Brett, S. Brezinsek, M. D. J. Bright, M. Brix, W. Broeckx, M. Brombin, A. Brosawski, D. P. D. Brown, M. Brown, E. Bruno, J. Bucalossi, J. Buch, J. Buchanan, M. A. Buckley, R. Budny, H. Bufferand, M. Bulman, N. Bulmer, P. Bunting, P. Buratti, A. Burckhart, A. Buscarino, A. Busse, N. K. Butler, I. Bykov, J. Byrne, P. Cahyna, G. Calabrò, I. Calvo, Y. Camenen, P. Camp, D. C. Campling, J. Cane, B. Cannas, A. J. Capel, P. J. Card, A. Cardinali, P. Carman, M. Carr, D. Carralero, L. Carraro, B. B. Carvalho, I. Carvalho, P. Carvalho, F. J. Casson, C. Castaldo, N. Catarino, J. Caumont, F. Causa, R. Cavazzana, K. Cave-Ayland, M. Cavinato, M. Cecconello, S. Ceccuzzi, E. Cecil, A. Cenedese, R. Cesario, C. D. Challis, M. Chandler, D. Chandra, C. S. Chang, A. Chankin, I. T. Chapman, S. C. Chapman, M. Chernyshova, G. Chitarin, G. Ciraolo, D. Ciric, J. Citrin, F. Clairet, E. Clark, M. Clark, R. Clarkson, D. Clatworthy, C. Clements, M. Cleverly, J. P. Coad, P. A. Coates, A. Cobalt, V. Coccorese, V. Cocilovo, S. Coda, R. Coelho, J. W. Coenen, I. Coffey, L. Colas, S. Collins, D. Conka, S. Conroy, N. Conway, D. Coombs, D. Cooper, S. R. Cooper, C. Corradino, Y. Corre, G. Corrigan, S. Cortes, D. Coster, A. S. Couchman, M. P. Cox, T. Craciunescu, S. Cramp, R. Craven, F. Crisanti, G. Croci, D. Croft, K. Crombé, R. Crowe, N. Cruz, G. Cseh, A. Cufar, A. Cullen, M. Curuia, A. Czarnecka, H. Dabirikhah, P. Dalgliesh, S. Dalley, J. Dankowski, D. Darrow, O. Davies, W. Davis, C. Day, I. E. Day, M. De Bock, A. de Castro, E. de la Cal, E. de la Luna, G. De Masi, J. L. de Pablos, G. De Temmerman, G. De Tommasi, P. de Vries, K. Deakin, J. Deane, F. Degli Agostini, R. Dejarnac, E. Delabie, N. den Harder, R. O. Dendy, J. Denis, P. Denner, S. Devaux, P. Devynck, F. Di Maio, A. Di Siena, C. Di Troia, P. Dinca, R. Dinca, B. Ding, T. Dittmar, H. Doerk, R. P. Doerner, T. Donné, S. E. Dorling, S. Dormido-Canto, S. Doswon, D. Douai, P. T. Doyle, A. Drenik, P. Drewelow, P. Drews, Ph. Duckworth, R. Dumont, P. Dumortier, D. Dunai, M. Dunne, I. Duran, F. Durodié, P. Dutta, B. P. Duval, R. Dux, K. Dylst, N. Dzysiuk, P. V. Edappala, J. Edmond, A. M. Edwards, J. Edwards, Th. Eich, A. Ekedahl, R. El-Jorf, C. G. Elsmore, M. Enachescu, G. Ericsson, F. Eriksson, J. Eriksson, L. G. Eriksson, B. Esposito, S. Esquembri, H. G. Esser, D. Esteve, B. Evans, G. E. Evans, G. Evison, G. D. Ewart, D. Fagan, M. Faitsch, D. Falie, A. Fanni, A. Fasoli, J. M. Faustin, N. Fawlk, L. Fazendeiro, N. Fedorczak, R. C. Felton, K. Fenton, A. Fernades, H. Fernandes, J. Ferreira, J. A. Fessey, O. Février, O. Ficker, A. Field, S. Fietz, A. Figueiredo, J. Figueiredo, A. Fil, P. Finburg, M. Firdaouss, U. Fischer, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, C. Fleming, K. Flinders, N. Fonnesu, J. M. Fontdecaba, A. Formisano, L. Forsythe, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, S. Foster, T. Franke, T. Franklin, M. Frasca, L. Frassinetti, M. Freisinger, R. Fresa, D. Frigione, V. Fuchs, D. Fuller, S. Futatani, J. Fyvie, K. Gàl, D. Galassi, K. Galazka, J. Galdon-Quiroga, J. Gallagher, D. Gallart, R. Galvão, X. Gao, Y. Gao, J. Garcia, A. Garcia-Carrasco, M. Garca-Munoz, J.-L. Gardarein, L. Garzotti, P. Gaudio, E. Gauthier, D. F. Gear, S. J. Gee, B. Geiger, M. Gelfusa, S. Gerasimov, G. Gervasini, M. Gethins, Z. Ghani, M. Ghate, M. Gherendi, J. C. Giacalone, L. Giacomelli, C. S. Gibson, T. Giegerich, C. Gil, L. Gil, S. Gilligan, D. Gin, E. Giovannozzi, J. B. Girardo, C. Giroud, G. Giruzzi, S. Glöggler, J. Godwin, J. Goff, P. Gohil, V. Goloborod'ko, R. Gomes, B. Goncalves, M. Goniche, M. Goodliffe, A. Goodyear, G. Gorini, M. Gosk, R. Goulding, A. Goussarov, R. Gowland, B. Graham, M. E. Graham, J. P. Graves, N. Grazier, P. Grazier, N. R. Green, H. Greuner, B. Grierson, F. S. Griph, C. Grisolia, D. Grist, M. Groth, R. Grove, C. N. Grundy, J. Grzonka, D. Guard, C. Guérard, C. Guillemaut, R. Guirlet, C. Gurl, H. H. Utoh, L. J. Hackett, S. Hacquin, A. Hagar, R. Hager, A. Hakola, M. Halitovs, S. J. Hall, S. P. Hallworth Cook, C. Hamlyn-Harris, K. Hammond, C. Harrington, J. Harrison, D. Harting, F. Hasenbeck, Y. Hatano, D. R. Hatch, T. D. V. Haupt, J. Hawes, N. C. Hawkes, J. Hawkins, P. Hawkins, P. W. Haydon, N. Hayter, S. Hazel, P. J. L. Heesterman, K. Heinola, C. Hellesen, T. Hellsten, W. Helou, O. N. Hemming, T. C. Hender, M. Henderson, S. S. Henderson, R. Henriques, D. Hepple, G. Hermon, P. Hertout, C. Hidalgo, E. G. Highcock, M. Hill, J. Hillairet, J. Hillesheim, D. Hillis, K. Hizanidis, A. Hjalmarsson, J. Hobirk, E. Hodille, C. H. A. Hogben, G. M. D. Hogeweij, A. Hollingsworth, S. Hollis, D. A. Homfray, J. Horàcek, G. Hornung, A. R. Horton, L. D. Horton, L. Horvath, S. P. Hotchin, M. R. Hough, P. J. Howarth, A. Hubbard, A. Huber, V. Huber, T. M. Huddleston, M. Hughes, G. T. A. Huijsmans, C. L. Hunter, P. Huynh, A. M. Hynes, D. Iglesias, N. Imazawa, F. Imbeaux, M. Imrìŝek, M. Incelli, P. Innocente, M. Irishkin, I. Ivanova-Stanik, S. Jachmich, A. S. Jacobsen, P. Jacquet, J. Jansons, A. Jardin, A. Järvinen, F. Jaulmes, S. Jednoróq, I. Jenkins, C. Jeong, I. Jepu, E. Joffrin, R. Johnson, T. Johnson, Jane Johnston, L. Joita, G. Jones, T. T. C. Jones, K. K. Hoshino, A. Kallenbach, K. Kamiya, J. Kaniewski, A. Kantor, A. Kappatou, J. Karhunen, D. Karkinsky, I. Karnowska, M. Kaufman, G. Kaveney, Y. Kazakov, V. Kazantzidis, D. L. Keeling, T. Keenan, J. Keep, M. Kempenaars, C. Kennedy, D. Kenny, J. Kent, O. N. Kent, E. Khilkevich, H. T. Kim, H. S. Kim, A. Kinch, C. King, D. King, R. F. King, D. J. Kinna, V. Kiptily, A. Kirk, K. Kirov, A. Kirschner, G. Kizane, C. Klepper, A. Klix, P. Knight, S. J. Knipe, S. Knott, T. Kobuchi, F. Köchl, G. Kocsis, I. Kodeli, L. Kogan, D. Kogut, S. Koivuranta, Y. Kominis, M. Köppen, B. Kos, T. Koskela, H. R. Koslowski, M. Koubiti, M. Kovari, E. Kowalska-Strzeciwilk, A. Krasilnikov, V. Krasilnikov, N. Krawczyk, M. Kresina, K. Krieger, A. Krivska, U. Kruezi, I. Ksiazek, A. Kukushkin, A. Kundu, T. Kurki-Suonio, S. Kwak, R. Kwiatkowski, O. J. Kwon, L. Laguardia, A. Lahtinen, A. Laing, N. Lam, H. T. Lambertz, C. Lane, P. T. Lang, S. Lanthaler, J. Lapins, A. Lasa, J. R. Last, E. Laszynska, R. Lawless, A. Lawson, K. D. Lawson, A. Lazaros, E. Lazzaro, J. Leddy, S. Lee, X. Lefebvre, H. J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, P. Leichuer, F. Leipold, I. Lengar, M. Lennholm, E. Lerche, A. Lescinskis, S. Lesnoj, E. Letellier, M. Leyland, W. Leysen, L. Li, Y. Liang, J. Likonen, J. Linke, Ch. Linsmeier, B. Lipschultz, G. Liu, Y. Liu, V. P. Lo Schiavo, T. Loarer, A. Loarte, R. C. Lobel, B. Lomanowski, P. J. Lomas, J. Lönnroth, J. M. López, J. López-Razola, R. Lorenzini, U. Losada, J. J. Lovell, A. B. Loving, C. Lowry, T. Luce, R. M. A. Lucock, A. Lukin, C. Luna, M. Lungaroni, C. P. Lungu, M. Lungu, A. Lunniss, I. Lupelli, A. Lyssoivan, N. Macdonald, P. Macheta, K. Maczewa, B. Magesh, P. Maget, C. Maggi, H. Maier, J. Mailloux, T. Makkonen, R. Makwana, A. Malaquias, A. Malizia, P. Manas, A. Manning, M. E. Manso, P. Mantica, M. Mantsinen, A. Manzanares, Ph. Maquet, Y. Marandet, N. Marcenko, C. Marchetto, O. Marchuk, M. Marinelli, M. Marinucci, T. Markovic, D. Marocco, L. Marot, C. A. Marren, R. Marshal, A. Martin, Y. Martin, A. Martín de Aguilera, F. J. Martínez, J. R. Martín-Solís, Y. Martynova, S. Maruyama, A. Masiello, M. Maslov, S. Matejcik, M. Mattei, G. F. Matthews, F. Maviglia, M. Mayer, M. L. Mayoral, T. May-Smith, D. Mazon, C. Mazzotta, R. McAdams, P. J. McCarthy, K. G. McClements, O. McCormack, P. A. McCullen, D. McDonald, S. McIntosh, R. McKean, J. McKehon, R. C. Meadows, A. Meakins, F. Medina, M. Medland, S. Medley, S. Meigh, A. G. Meigs, G. Meisl, S. Meitner, L. Meneses, S. Menmuir, K. Mergia, I. R. Merrigan, Ph. Mertens, S. Meshchaninov, A. Messiaen, H. Meyer, S. Mianowski, R. Michling, D. Middleton-Gear, J. Miettunen, F. Militello, E. Militello-Asp, G. Miloshevsky, F. Mink, S. Minucci, Y. Miyoshi, J. Mlynàr, D. Molina, I. Monakhov, M. Moneti, R. Mooney, S. Moradi, S. Mordijck, L. Moreira, R. Moreno, F. Moro, A. W. Morris, J. Morris, L. Moser, S. Mosher, D. Moulton, A. Murari, A. Muraro, S. Murphy, N. N. Asakura, Y. S. Na, F. Nabais, R. Naish, T. Nakano, E. Nardon, V. Naulin, M. F. F. Nave, I. Nedzelski, G. Nemtsev, F. Nespoli, A. Neto, R. Neu, V. S. Neverov, M. Newman, K. J. Nicholls, T. Nicolas, A. H. Nielsen, P. Nielsen, E. Nilsson, D. Nishijima, C. Noble, M. Nocente, D. Nodwell, K. Nordlund, H. Nordman, R. Nouailletas, I. Nunes, M. Oberkofler, T. Odupitan, M. T. Ogawa, T. O'Gorman, M. Okabayashi, R. Olney, O. Omolayo, M. O'Mullane, J. Ongena, F. Orsitto, J. Orszagh, B. I. Oswuigwe, R. Otin, A. Owen, R. Paccagnella, N. Pace, D. Pacella, L. W. Packer, A. Page, E. Pajuste, S. Palazzo, S. Pamela, S. Panja, P. Papp, R. Paprok, V. Parail, M. Park, F. Parra Diaz, M. Parsons, R. Pasqualotto, A. Patel, S. Pathak, D. Paton, H. Patten, A. Pau, E. Pawelec, C. Paz Soldan, A. Peackoc, I. J. Pearson, S.-P. Pehkonen, E. Peluso, C. Penot, A. Pereira, R. Pereira, P. P. Pereira Puglia, C. Perez von Thun, S. Peruzzo, S. Peschanyi, M. Peterka, P. Petersson, G. Petravich, A. Petre, N. Petrella, V. Petrzilka, Y. Peysson, D. Pfefferlé, V. Philipps, M. Pillon, G. Pintsuk, P. Piovesan, A. Pires dos Reis, L. Piron, A. Pironti, F. Pisano, R. Pitts, F. Pizzo, V. Plyusnin, N. Pomaro, O. G. Pompilian, P. J. Pool, S. Popovichev, M. T. Porfiri, C. Porosnicu, M. Porton, G. Possnert, S. Potzel, T. Powell, J. Pozzi, V. Prajapati, R. Prakash, G. Prestopino, D. Price, M. Price, R. Price, P. Prior, R. Proudfoot, G. Pucella, P. Puglia, M. E. Puiatti, D. Pulley, K. Purahoo, Th. Pütterich, E. Rachlew, M. Rack, R. Ragona, M. S. J. Rainford, A. Rakha, G. Ramogida, S. Ranjan, C. J. Rapson, J. J. Rasmussen, K. Rathod, G. Rattà, S. Ratynskaia, G. Ravera, C. Rayner, M. Rebai, D. Reece, A. Reed, D. Réfy, B. Regan, J. Regana, M. Reich, N. Reid, F. Reimold, M. Reinhart, M. Reinke, D. Reiser, D. Rendell, C. Reux, S. D. A. Reyes Cortes, S. Reynolds, V. Riccardo, N. Richardson, K. Riddle, D. Rigamonti, F. G. Rimini, J. Risner, M. Riva, C. Roach, R. J. Robins, S. A. Robinson, T. Robinson, D. W. Robson, R. Roccella, R. Rodionov, P. Rodrigues, J. Rodriguez, V. Rohde, F. Romanelli, M. Romanelli, S. Romanelli, J. Romazanov, S. Rowe, M. Rubel, G. Rubinacci, G. Rubino, L. Ruchko, M. Ruiz, C. Ruset, J. Rzadkiewicz, S. Saarelma, R. Sabot, E. Safi, P. Sagar, G. Saibene, F. Saint-Laurent, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, D. Samaddar, U. Samm, D. Sandiford, P. Santa, M. I. K. Santala, B. Santos, A. Santucci, F. Sartori, R. Sartori, O. Sauter, R. Scannell, T. Schlummer, K. Schmid, V. Schmidt, S. Schmuck, M. Schneider, K. Schöpf, D. Schwörer, S. D. Scott, G. Sergienko, M. Sertoli, A. Shabbir, S. E. Sharapov, A. Shaw, R. Shaw, H. Sheikh, A. Shepherd, A. Shevelev, A. Shumack, G. Sias, M. Sibbald, B. Sieglin, S. Silburn, A. Silva, C. Silva, P. A. Simmons, J. Simpson, J. Simpson-Hutchinson, A. Sinha, S. K. Sipilä, A. C. C. Sips, P. Sirén, A. Sirinelli, H. Sjöstrand, M. Skiba, R. Skilton, K. Slabkowska, B. Slade, N. Smith, P. G. Smith, R. Smith, T. J. Smith, M. Smithies, L. Snoj, S. Soare, E. R. Solano, A. Somers, C. Sommariva, P. Sonato, A. Sopplesa, J. Sousa, C. Sozzi, S. Spagnolo, T. Spelzini, F. Spineanu, G. Stables, I. Stamatelatos, M. F. Stamp, P. Staniec, G. Stankunas, C. Stan-Sion, M. J. Stead, E. Stefanikova, I. Stepanov, A. V. Stephen, M. Stephen, A. Stevens, B. D. Stevens, J. Strachan, P. Strand, H. R. Strauss, P. Ström, G. Stubbs, W. Studholme, F. Subba, H. P. Summers, J. Svensson, L. Swiderski, T. Szabolics, M. Szawlowski, G. Szepesi, T. T. Suzuki, B. Tàl, T. Tala, A. R. Talbot, S. Talebzadeh, C. Taliercio, P. Tamain, C. Tame, W. Tang, M. Tardocchi, L. Taroni, D. Taylor, K. A. Taylor, D. Tegnered, G. Telesca, N. Teplova, D. Terranova, D. Testa, E. Tholerus, J. Thomas, J. D. Thomas, P. Thomas, A. Thompson, C.-A. Thompson, V. K. Thompson, L. Thorne, A. Thornton, A. S. Thrysoe, P. A. Tigwell, N. Tipton, I. Tiseanu, H. Tojo, M. Tokitani, P. Tolias, M. Tomes, P. Tonner, M. Towndrow, P. Trimble, M. Tripsky, M. Tsalas, P. Tsavalas, D. Tskhakaya jun, I. Turner, M. M. Turner, M. Turnyanskiy, G. Tvalashvili, S. G. J. Tyrrell, A. Uccello, Z. Ul-Abidin, J. Uljanovs, D. Ulyatt, H. Urano, I. Uytdenhouwen, A. P. Vadgama, D. Valcarcel, M. Valentinuzzi, M. Valisa, P. Vallejos Olivares, M. Valovic, M. Van De Mortel, D. Van Eester, W. Van Renterghem, G. J. van Rooij, J. Varje, S. Varoutis, S. Vartanian, K. Vasava, T. Vasilopoulou, J. Vega, G. Verdoolaege, R. Verhoeven, C. Verona, G. Verona Rinati, E. Veshchev, N. Vianello, J. Vicente, E. Viezzer, S. Villari, F. Villone, P. Vincenzi, I. Vinyar, B. Viola, A. Vitins, Z. Vizvary, M. Vlad, I. Voitsekhovitch, P. Vondràcek, N. Vora, T. Vu, W. W. Pires de Sa, B. Wakeling, C. W. F. Waldon, N. Walkden, M. Walker, R. Walker, M. Walsh, E. Wang, N. Wang, S. Warder, R. J. Warren, J. Waterhouse, N. W. Watkins, C. Watts, T. Wauters, A. Weckmann, J. Weiland, H. Weisen, M. Weiszflog, C. Wellstood, A. T. West, M. R. Wheatley, S. Whetham, A. M. Whitehead, B. D. Whitehead, A. M. Widdowson, S. Wiesen, J. Wilkinson, J. Williams, M. Williams, A. R. Wilson, D. J. Wilson, H. R. Wilson, J. Wilson, M. Wischmeier, G. Withenshaw, A. Withycombe, D. M. Witts, D. Wood, R. Wood, C. Woodley, S. Wray, J. Wright, J. C. Wright, J. Wu, S. Wukitch, A. Wynn, T. Xu, D. Yadikin, W. Yanling, L. Yao, V. Yavorskij, M. G. Yoo, C. Young, D. Young, I. D. Young, R. Young, J. Zacks, R. Zagorski, F. S. Zaitsev, R. Zanino, A. Zarins, K. D. Zastrow, M. Zerbini, W. Zhang, Y. Zhou, E. Zilli, V. Zoita, S. Zoletnik, and I. Zychor
- Subjects
Physics ,QC1-999 - Abstract
A global heat flux model based on a fractional derivative of plasma pressure is proposed for the heat transport in fusion plasmas. The degree of the fractional derivative of the heat flux, α, is defined through the power balance analysis of the steady state. The model was used to obtain the experimental values of α for a large database of the Joint European Torus (JET) carbon-wall as well as ITER like-wall plasmas. The fractional degrees of the electron heat flux are found to be α
- Published
- 2020
- Full Text
- View/download PDF
33. A new hard x-ray spectrometer for runaway electron measurements in tokamaks
- Author
-
A Dal Molin, M Nocente, M Dalla Rosa, E Panontin, D Rigamonti, M Tardocchi, A Shevelev, E Khilkevitch, M Iliasova, L Giacomelli, G Gorini, E Perelli Cippo, F D’Isa, G Pautasso, G Papp, G Tardini, E Macusova, J Cerovsky, O Ficker, M Salewski, V Kiptily, EUROfusion MST1 Team, COMPASS Team, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Applied Mathematics ,Nuclear instruments and methods for hot plasma diagnostics ,X-ray detectors ,Instrumentation ,Engineering (miscellaneous) ,Runaway electrons - Abstract
Runaway electron gamma-ray detection system, a novel hard x-ray (HXR) spectrometer optimized for bremsstrahlung radiation measurement from runaway electrons in fusion plasmas, has been developed. The detector is based on a 1‘×1’ LaBr3:Ce scintillator crystal coupled with a photomultiplier tube. The system has an energy dynamic range exceeding 20 MeV with an energy resolution of 3% at 661.7 keV. The detector gain is stable even under severe loads, with a gain shift that stays below 3% at HXR counting rates in excess of 1 MCps. The performance of the system enables unprecedented studies of the time-dependent runaway electron energy distribution function, as shown in recent runaway electron physics experiments at the ASDEX Upgrade and COMPASS tokamaks.
- Published
- 2023
- Full Text
- View/download PDF
34. Analytical and MonteCarlo approaches to infer the total gamma ray emission from the JET tokamak
- Author
-
G. Marcer, A. Zohar, A. Dal Molin, D. Rigamonti, M. Rebai, M. Nocente, E. Panontin, G. Croci, G. Gorini, G. Grosso, A. Muraro, E. Perelli Cippo, O. Putignano, E. de la Luna, Z. Ghani, S. Conroy, J. Garcia, Y. Kazakov, V. Kiptily, M. Maslov, M.F.F. Nave, J. Ongena, and M. Tardocchi
- Subjects
Instrumentation ,Mathematical Physics - Abstract
A single gamma-ray spectrometer installed at the end of a collimator can be used to infer the total emission from a tokamak plasma if the transport of gamma-rays from the plasma to the detector is known. In such analysis, the plasma emission profile plays a fundamental role, since it impacts the fraction of plasma volume intercepted by the detector line of sight. In this work, the DT 17 MeV fusion gamma-rays emission profile of the JET discharge #99608 from second 46 to 48 has been estimated both with the TRANSP code and reconstructed through tomographic inversion based on the neutron camera data, assuming that fusion gamma-rays have the same profile as the 14 MeV fusion neutrons. The gamma-ray transport has been evaluated both by MonteCarlo simulations and analytical calculations. By combining MonteCarlo and analytical evaluations of the gamma-ray transport in different ways with the estimated radiation emission profile, we provide four different routes to determine the total gamma-ray yield from measurements whose results agree within better than 10%.
- Published
- 2023
- Full Text
- View/download PDF
35. DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
- Author
-
M. E. Fenstermacher, J. Abbate, S. Abe, T. Abrams, M. Adams, B. Adamson, N. Aiba, T. Akiyama, P. Aleynikov, E. Allen, S. Allen, H. Anand, J. Anderson, Y. Andrew, T. Andrews, D. Appelt, R. Arbon, N. Ashikawa, A. Ashourvan, M. Aslin, Y. Asnis, M. Austin, D. Ayala, J. Bak, I. Bandyopadhyay, S. Banerjee, K. Barada, L. Bardoczi, J. Barr, E. Bass, D. Battaglia, A. Battey, W. Baumgartner, L. Baylor, J. Beckers, M. Beidler, E. Belli, J. Berkery, T. Bernard, N. Bertelli, M. Beurskens, R. Bielajew, S. Bilgili, B. Biswas, S. Blondel, J. Boedo, I. Bogatu, R. Boivin, T. Bolzonella, M. Bongard, X. Bonnin, P. Bonoli, M. Bonotto, A. Bortolon, S. Bose, N. Bosviel, S. Bouwmans, M. Boyer, W. Boyes, L. Bradley, R. Brambila, D. Brennan, S. Bringuier, L. Brodsky, M. Brookman, J. Brooks, D. Brower, G. Brown, W. Brown, M. Burke, K. Burrell, K. Butler, R. Buttery, I. Bykov, P. Byrne, A. Cacheris, K. Callahan, J. Callen, G. Campbell, J. Candy, J. Canik, P. Cano-Megias, N. Cao, L. Carayannopoulos, T. Carlstrom, W. Carrig, T. Carter, W. Cary, L. Casali, M. Cengher, G. Cespedes Paz, R. Chaban, V. Chan, B. Chapman, I. Char, A. Chattopadhyay, R. Chen, J. Chen, X. Chen, M. Chen, Z. Chen, M. Choi, W. Choi, G. Choi, L. Chousal, C. Chrobak, C. Chrystal, Y. Chung, R. Churchill, M. Cianciosa, J. Clark, M. Clement, S. Coda, A. Cole, C. Collins, W. Conlin, A. Cooper, J. Cordell, B. Coriton, T. Cote, J. Cothran, A. Creely, N. Crocker, C. Crowe, B. Crowley, T. Crowley, D. Cruz-Zabala, D. Cummings, M. Curie, D. Curreli, A. Dal Molin, B. Dannels, A. Dautt-Silva, K. Davda, G. De Tommasi, P. De Vries, G. Degrandchamp, J. Degrassie, D. Demers, S. Denk, S. Depasquale, E. Deshazer, A. Diallo, S. Diem, A. Dimits, R. Ding, S. Ding, W. Ding, T. Do, J. Doane, G. Dong, D. Donovan, J. Drake, W. Drews, J. Drobny, X. Du, H. Du, V. Duarte, D. Dudt, C. Dunn, J. Duran, A. Dvorak, F. Effenberg, N. Eidietis, D. Elder, D. Eldon, R. Ellis, W. Elwasif, D. Ennis, K. Erickson, D. Ernst, M. Fasciana, D. Fedorov, E. Feibush, N. Ferraro, J. Ferreira, J. Ferron, P. Fimognari, D. Finkenthal, R. Fitzpatrick, P. Fox, W. Fox, L. Frassinetti, H. Frerichs, H. Frye, Y. Fu, K. Gage, J. Galdon Quiroga, A. Gallo, Q. Gao, A. Garcia, M. Garcia Munoz, D. Garnier, A. Garofalo, A. Gattuso, D. Geng, K. Gentle, D. Ghosh, L. Giacomelli, S. Gibson, E. Gilson, C. Giroud, F. Glass, A. Glasser, D. Glibert, P. Gohil, R. Gomez, S. Gomez, X. Gong, E. Gonzales, A. Goodman, Y. Gorelov, V. Graber, R. Granetz, T. Gray, D. Green, C. Greenfield, M. Greenwald, B. Grierson, R. Groebner, W. Grosnickle, M. Groth, H. Grunloh, S. Gu, W. Guo, H. Guo, P. Gupta, J. Guterl, W. Guttenfelder, T. Guzman, S. Haar, R. Hager, S. Hahn, M. Halfmoon, T. Hall, K. Hallatschek, F. Halpern, G. Hammett, H. Han, E. Hansen, C. Hansen, M. Hansink, J. Hanson, M. Hanson, G. Hao, A. Harris, R. Harvey, S. Haskey, E. Hassan, A. Hassanein, D. Hatch, R. Hawryluk, W. Hayashi, W. Heidbrink, J. Herfindal, J. Hicok, D. Hill, E. Hinson, C. Holcomb, L. Holland, C. Holland, E. Hollmann, J. Hollocombe, A. Holm, I. Holmes, K. Holtrop, M. Honda, R. Hong, R. Hood, A. Horton, L. Horvath, M. Hosokawa, S. Houshmandyar, N. Howard, E. Howell, D. Hoyt, W. Hu, Y. Hu, Q. Hu, J. Huang, Y. Huang, J. Hughes, T. Human, D. Humphreys, P. Huynh, A. Hyatt, C. Ibanez, L. Ibarra, R. Icasas, K. Ida, V. Igochine, Y. In, S. Inoue, A. Isayama, O. Izacard, V. Izzo, A. Jackson, G. Jacobsen, A. Jaervinen, A. Jalalvand, J. Janhunen, S. Jardin, H. Jarleblad, Y. Jeon, H. Ji, X. Jian, E. Joffrin, A. Johansen, C. Johnson, T. Johnson, C. Jones, I. Joseph, D. Jubas, B. Junge, W. Kalb, R. Kalling, C. Kamath, J. Kang, D. Kaplan, A. Kaptanoglu, S. Kasdorf, J. Kates-Harbeck, P. Kazantzidis, A. Kellman, D. Kellman, C. Kessel, K. Khumthong, E. Kim, H. Kim, J. Kim, S. Kim, K. Kim, C. Kim, W. Kimura, M. King, J. King, J. Kinsey, A. Kirk, B. Kiyan, A. Kleiner, V. Klevarova, R. Knapp, M. Knolker, W. Ko, T. Kobayashi, E. Koch, M. Kochan, B. Koel, M. Koepke, A. Kohn, R. Kolasinski, E. Kolemen, E. Kostadinova, M. Kostuk, G. Kramer, D. Kriete, L. Kripner, S. Kubota, J. Kulchar, K. Kwon, R. La Haye, F. Laggner, H. Lan, R. Lantsov, L. Lao, A. Lasa Esquisabel, C. Lasnier, C. Lau, B. Leard, J. Lee, R. Lee, M. Lee, Y. Lee, C. Lee, S. Lee, M. Lehnen, A. Leonard, E. Leppink, M. Lesher, J. Lestz, J. Leuer, N. Leuthold, X. Li, K. Li, E. Li, G. Li, L. Li, Z. Li, J. Li, Y. Li, Z. Lin, D. Lin, X. Liu, J. Liu, Y. Liu, T. Liu, C. Liu, Z. Liu, D. Liu, A. Liu, A. Loarte-Prieto, L. Lodestro, N. Logan, J. Lohr, B. Lombardo, J. Lore, Q. Luan, T. Luce, T. Luda Di Cortemiglia, N. Luhmann, R. Lunsford, Z. Luo, A. Lvovskiy, B. Lyons, X. Ma, M. Madruga, B. Madsen, C. Maggi, K. Maheshwari, A. Mail, J. Mailloux, R. Maingi, M. Major, M. Makowski, R. Manchanda, C. Marini, A. Marinoni, A. Maris, T. Markovic, L. Marrelli, E. Martin, J. Mateja, G. Matsunaga, R. Maurizio, P. Mauzey, D. Mauzey, G. Mcardle, J. Mcclenaghan, K. Mccollam, C. Mcdevitt, K. Mckay, G. Mckee, A. Mclean, V. Mehta, E. Meier, J. Menard, O. Meneghini, G. Merlo, S. Messer, W. Meyer, C. Michael, C. Michoski, P. Milne, G. Minet, A. Misleh, Y. Mitrishkin, C. Moeller, K. Montes, M. Morales, S. Mordijck, D. Moreau, S. Morosohk, P. Morris, L. Morton, A. Moser, R. Moyer, C. Moynihan, T. Mrazkova, D. Mueller, S. Munaretto, J. Munoz Burgos, C. Murphy, K. Murphy, C. Muscatello, C. Myers, A. Nagy, G. Nandipati, M. Navarro, F. Nave, G. Navratil, R. Nazikian, A. Neff, G. Neilson, T. Neiser, W. Neiswanger, D. Nelson, A. Nelson, F. Nespoli, R. Nguyen, L. Nguyen, X. Nguyen, J. Nichols, M. Nocente, S. Nogami, S. Noraky, N. Norausky, M. Nornberg, R. Nygren, T. Odstrcil, D. Ogas, T. Ogorman, S. Ohdachi, Y. Ohtani, M. Okabayashi, M. Okamoto, L. Olavson, E. Olofsson, M. Omullane, R. Oneill, D. Orlov, W. Orvis, T. Osborne, D. Pace, G. Paganini Canal, A. Pajares Martinez, L. Palacios, C. Pan, Q. Pan, R. Pandit, M. Pandya, A. Pankin, Y. Park, J. Park, S. Parker, P. Parks, M. Parsons, B. Patel, C. Pawley, C. Paz-Soldan, W. Peebles, S. Pelton, R. Perillo, C. Petty, Y. Peysson, D. Pierce, A. Pigarov, L. Pigatto, D. Piglowski, S. Pinches, R. Pinsker, P. Piovesan, N. Piper, A. Pironti, R. Pitts, J. Pizzo, U. Plank, M. Podesta, E. Poli, F. Poli, D. Ponce, Z. Popovic, M. Porkolab, G. Porter, C. Powers, S. Powers, R. Prater, Q. Pratt, I. Pusztai, J. Qian, X. Qin, O. Ra, T. Rafiq, T. Raines, R. Raman, J. Rauch, A. Raymond, C. Rea, M. Reich, A. Reiman, S. Reinhold, M. Reinke, R. Reksoatmodjo, Q. Ren, Y. Ren, J. Ren, M. Rensink, J. Renteria, T. Rhodes, J. Rice, R. Roberts, J. Robinson, P. Rodriguez Fernandez, T. Rognlien, A. Rosenthal, S. Rosiello, J. Rost, J. Roveto, W. Rowan, R. Rozenblat, J. Ruane, D. Rudakov, J. Ruiz Ruiz, R. Rupani, S. Saarelma, S. Sabbagh, J. Sachdev, J. Saenz, S. Saib, M. Salewski, A. Salmi, B. Sammuli, C. Samuell, A. Sandorfi, C. Sang, J. Sarff, O. Sauter, K. Schaubel, L. Schmitz, O. Schmitz, J. Schneider, P. Schroeder, K. Schultz, E. Schuster, J. Schwartz, F. Sciortino, F. Scotti, J. Scoville, A. Seltzman, S. Seol, I. Sfiligoi, M. Shafer, S. Sharapov, H. Shen, Z. Sheng, T. Shepard, S. Shi, Y. Shibata, G. Shin, D. Shiraki, R. Shousha, H. Si, P. Simmerling, G. Sinclair, J. Sinha, P. Sinha, G. Sips, T. Sizyuk, C. Skinner, A. Sladkomedova, T. Slendebroek, J. Slief, R. Smirnov, J. Smith, S. Smith, D. Smith, J. Snipes, G. Snoep, A. Snyder, P. Snyder, E. Solano, W. Solomon, J. Song, A. Sontag, V. Soukhanovskii, J. Spendlove, D. Spong, J. Squire, C. Srinivasan, W. Stacey, G. Staebler, L. Stagner, T. Stange, P. Stangeby, R. Stefan, R. Stemprok, D. Stephan, J. Stillerman, T. Stoltzfus-Dueck, W. Stonecipher, S. Storment, E. Strait, D. Su, L. Sugiyama, Y. Sun, P. Sun, Z. Sun, A. Sun, D. Sundstrom, C. Sung, J. Sungcoco, W. Suttrop, Y. Suzuki, T. Suzuki, A. Svyatkovskiy, C. Swee, R. Sweeney, C. Sweetnam, G. Szepesi, M. Takechi, T. Tala, K. Tanaka, X. Tang, S. Tang, Y. Tao, R. Tao, D. Taussig, T. Taylor, K. Teixeira, K. Teo, A. Theodorsen, D. Thomas, K. Thome, A. Thorman, A. Thornton, A. Ti, M. Tillack, N. Timchenko, R. Tinguely, R. Tompkins, J. Tooker, A. Torrezan De Sousa, G. Trevisan, S. Tripathi, A. Trujillo Ochoa, D. Truong, C. Tsui, F. Turco, A. Turnbull, M. Umansky, E. Unterberg, P. Vaezi, P. Vail, J. Valdez, W. Valkis, B. Van Compernolle, J. Van Galen, R. Van Kampen, M. Van Zeeland, G. Verdoolaege, N. Vianello, B. Victor, E. Viezzer, S. Vincena, M. Wade, F. Waelbroeck, J. Wai, T. Wakatsuki, M. Walker, G. Wallace, R. Waltz, W. Wampler, L. Wang, H. Wang, Y. Wang, Z. Wang, G. Wang, S. Ward, M. Watkins, J. Watkins, W. Wehner, Y. Wei, M. Weiland, D. Weisberg, A. Welander, A. White, R. White, S. Wiesen, R. Wilcox, T. Wilks, M. Willensdorfer, H. Wilson, A. Wingen, M. Wolde, M. Wolff, K. Woller, A. Wolz, H. Wong, S. Woodruff, M. Wu, Y. Wu, S. Wukitch, G. Wurden, W. Xiao, R. Xie, Z. Xing, X. Xu, C. Xu, G. Xu, Z. Yan, X. Yang, S. Yang, T. Yokoyama, R. Yoneda, M. Yoshida, K. You, T. Younkin, J. Yu, M. Yu, G. Yu, Q. Yuan, L. Zaidenberg, L. Zakharov, A. Zamengo, S. Zamperini, M. Zarnstorff, E. Zeger, K. Zeller, L. Zeng, M. Zerbini, L. Zhang, X. Zhang, R. Zhang, B. Zhang, J. Zhang, L. Zhao, B. Zhao, Y. Zheng, L. Zheng, B. Zhu, J. Zhu, Y. Zhu, M. Zsutty, M. Zuin, Fenstermacher, M. E., Abbate, J., Abe, S., Abrams, T., Adams, M., Adamson, B., Aiba, N., Akiyama, T., Aleynikov, P., Allen, E., Allen, S., Anand, H., Anderson, J., Andrew, Y., Andrews, T., Appelt, D., Arbon, R., Ashikawa, N., Ashourvan, A., Aslin, M., Asnis, Y., Austin, M., Ayala, D., Bak, J., Bandyopadhyay, I., Banerjee, S., Barada, K., Bardoczi, L., Barr, J., Bass, E., Battaglia, D., Battey, A., Baumgartner, W., Baylor, L., Beckers, J., Beidler, M., Belli, E., Berkery, J., Bernard, T., Bertelli, N., Beurskens, M., Bielajew, R., Bilgili, S., Biswas, B., Blondel, S., Boedo, J., Bogatu, I., Boivin, R., Bolzonella, T., Bongard, M., Bonnin, X., Bonoli, P., Bonotto, M., Bortolon, A., Bose, S., Bosviel, N., Bouwmans, S., Boyer, M., Boyes, W., Bradley, L., Brambila, R., Brennan, D., Bringuier, S., Brodsky, L., Brookman, M., Brooks, J., Brower, D., Brown, G., Brown, W., Burke, M., Burrell, K., Butler, K., Buttery, R., Bykov, I., Byrne, P., Cacheris, A., Callahan, K., Callen, J., Campbell, G., Candy, J., Canik, J., Cano-Megias, P., Cao, N., Carayannopoulos, L., Carlstrom, T., Carrig, W., Carter, T., Cary, W., Casali, L., Cengher, M., Cespedes Paz, G., Chaban, R., Chan, V., Chapman, B., Char, I., Chattopadhyay, A., Chen, R., Chen, J., Chen, X., Chen, M., Chen, Z., Choi, M., Choi, W., Choi, G., Chousal, L., Chrobak, C., Chrystal, C., Chung, Y., Churchill, R., Cianciosa, M., Clark, J., Clement, M., Coda, S., Cole, A., Collins, C., Conlin, W., Cooper, A., Cordell, J., Coriton, B., Cote, T., Cothran, J., Creely, A., Crocker, N., Crowe, C., Crowley, B., Crowley, T., Cruz-Zabala, D., Cummings, D., Curie, M., Curreli, D., Dal Molin, A., Dannels, B., Dautt-Silva, A., Davda, K., De Tommasi, G., De Vries, P., Degrandchamp, G., Degrassie, J., Demers, D., Denk, S., Depasquale, S., Deshazer, E., Diallo, A., Diem, S., Dimits, A., Ding, R., Ding, S., Ding, W., Do, T., Doane, J., Dong, G., Donovan, D., Drake, J., Drews, W., Drobny, J., Du, X., Du, H., Duarte, V., Dudt, D., Dunn, C., Duran, J., Dvorak, A., Effenberg, F., Eidietis, N., Elder, D., Eldon, D., Ellis, R., Elwasif, W., Ennis, D., Erickson, K., Ernst, D., Fasciana, M., Fedorov, D., Feibush, E., Ferraro, N., Ferreira, J., Ferron, J., Fimognari, P., Finkenthal, D., Fitzpatrick, R., Fox, P., Fox, W., Frassinetti, L., Frerichs, H., Frye, H., Fu, Y., Gage, K., Galdon Quiroga, J., Gallo, A., Gao, Q., Garcia, A., Garcia Munoz, M., Garnier, D., Garofalo, A., Gattuso, A., Geng, D., Gentle, K., Ghosh, D., Giacomelli, L., Gibson, S., Gilson, E., Giroud, C., Glass, F., Glasser, A., Glibert, D., Gohil, P., Gomez, R., Gomez, S., Gong, X., Gonzales, E., Goodman, A., Gorelov, Y., Graber, V., Granetz, R., Gray, T., Green, D., Greenfield, C., Greenwald, M., Grierson, B., Groebner, R., Grosnickle, W., Groth, M., Grunloh, H., Gu, S., Guo, W., Guo, H., Gupta, P., Guterl, J., Guttenfelder, W., Guzman, T., Haar, S., Hager, R., Hahn, S., Halfmoon, M., Hall, T., Hallatschek, K., Halpern, F., Hammett, G., Han, H., Hansen, E., Hansen, C., Hansink, M., Hanson, J., Hanson, M., Hao, G., Harris, A., Harvey, R., Haskey, S., Hassan, E., Hassanein, A., Hatch, D., Hawryluk, R., Hayashi, W., Heidbrink, W., Herfindal, J., Hicok, J., Hill, D., Hinson, E., Holcomb, C., Holland, L., Holland, C., Hollmann, E., Hollocombe, J., Holm, A., Holmes, I., Holtrop, K., Honda, M., Hong, R., Hood, R., Horton, A., Horvath, L., Hosokawa, M., Houshmandyar, S., Howard, N., Howell, E., Hoyt, D., Hu, W., Hu, Y., Hu, Q., Huang, J., Huang, Y., Hughes, J., Human, T., Humphreys, D., Huynh, P., Hyatt, A., Ibanez, C., Ibarra, L., Icasas, R., Ida, K., Igochine, V., In, Y., Inoue, S., Isayama, A., Izacard, O., Izzo, V., Jackson, A., Jacobsen, G., Jaervinen, A., Jalalvand, A., Janhunen, J., Jardin, S., Jarleblad, H., Jeon, Y., Ji, H., Jian, X., Joffrin, E., Johansen, A., Johnson, C., Johnson, T., Jones, C., Joseph, I., Jubas, D., Junge, B., Kalb, W., Kalling, R., Kamath, C., Kang, J., Kaplan, D., Kaptanoglu, A., Kasdorf, S., Kates-Harbeck, J., Kazantzidis, P., Kellman, A., Kellman, D., Kessel, C., Khumthong, K., Kim, E., Kim, H., Kim, J., Kim, S., Kim, K., Kim, C., Kimura, W., King, M., King, J., Kinsey, J., Kirk, A., Kiyan, B., Kleiner, A., Klevarova, V., Knapp, R., Knolker, M., Ko, W., Kobayashi, T., Koch, E., Kochan, M., Koel, B., Koepke, M., Kohn, A., Kolasinski, R., Kolemen, E., Kostadinova, E., Kostuk, M., Kramer, G., Kriete, D., Kripner, L., Kubota, S., Kulchar, J., Kwon, K., La Haye, R., Laggner, F., Lan, H., Lantsov, R., Lao, L., Lasa Esquisabel, A., Lasnier, C., Lau, C., Leard, B., Lee, J., Lee, R., Lee, M., Lee, Y., Lee, C., Lee, S., Lehnen, M., Leonard, A., Leppink, E., Lesher, M., Lestz, J., Leuer, J., Leuthold, N., Li, X., Li, K., Li, E., Li, G., Li, L., Li, Z., Li, J., Li, Y., Lin, Z., Lin, D., Liu, X., Liu, J., Liu, Y., Liu, T., Liu, C., Liu, Z., Liu, D., Liu, A., Loarte-Prieto, A., Lodestro, L., Logan, N., Lohr, J., Lombardo, B., Lore, J., Luan, Q., Luce, T., Luda Di Cortemiglia, T., Luhmann, N., Lunsford, R., Luo, Z., Lvovskiy, A., Lyons, B., Ma, X., Madruga, M., Madsen, B., Maggi, C., Maheshwari, K., Mail, A., Mailloux, J., Maingi, R., Major, M., Makowski, M., Manchanda, R., Marini, C., Marinoni, A., Maris, A., Markovic, T., Marrelli, L., Martin, E., Mateja, J., Matsunaga, G., Maurizio, R., Mauzey, P., Mauzey, D., Mcardle, G., Mcclenaghan, J., Mccollam, K., Mcdevitt, C., Mckay, K., Mckee, G., Mclean, A., Mehta, V., Meier, E., Menard, J., Meneghini, O., Merlo, G., Messer, S., Meyer, W., Michael, C., Michoski, C., Milne, P., Minet, G., Misleh, A., Mitrishkin, Y., Moeller, C., Montes, K., Morales, M., Mordijck, S., Moreau, D., Morosohk, S., Morris, P., Morton, L., Moser, A., Moyer, R., Moynihan, C., Mrazkova, T., Mueller, D., Munaretto, S., Munoz Burgos, J., Murphy, C., Murphy, K., Muscatello, C., Myers, C., Nagy, A., Nandipati, G., Navarro, M., Nave, F., Navratil, G., Nazikian, R., Neff, A., Neilson, G., Neiser, T., Neiswanger, W., Nelson, D., Nelson, A., Nespoli, F., Nguyen, R., Nguyen, L., Nguyen, X., Nichols, J., Nocente, M., Nogami, S., Noraky, S., Norausky, N., Nornberg, M., Nygren, R., Odstrcil, T., Ogas, D., Ogorman, T., Ohdachi, S., Ohtani, Y., Okabayashi, M., Okamoto, M., Olavson, L., Olofsson, E., Omullane, M., Oneill, R., Orlov, D., Orvis, W., Osborne, T., Pace, D., Paganini Canal, G., Pajares Martinez, A., Palacios, L., Pan, C., Pan, Q., Pandit, R., Pandya, M., Pankin, A., Park, Y., Park, J., Parker, S., Parks, P., Parsons, M., Patel, B., Pawley, C., Paz-Soldan, C., Peebles, W., Pelton, S., Perillo, R., Petty, C., Peysson, Y., Pierce, D., Pigarov, A., Pigatto, L., Piglowski, D., Pinches, S., Pinsker, R., Piovesan, P., Piper, N., Pironti, A., Pitts, R., Pizzo, J., Plank, U., Podesta, M., Poli, E., Poli, F., Ponce, D., Popovic, Z., Porkolab, M., Porter, G., Powers, C., Powers, S., Prater, R., Pratt, Q., Pusztai, I., Qian, J., Qin, X., Ra, O., Rafiq, T., Raines, T., Raman, R., Rauch, J., Raymond, A., Rea, C., Reich, M., Reiman, A., Reinhold, S., Reinke, M., Reksoatmodjo, R., Ren, Q., Ren, Y., Ren, J., Rensink, M., Renteria, J., Rhodes, T., Rice, J., Roberts, R., Robinson, J., Rodriguez Fernandez, P., Rognlien, T., Rosenthal, A., Rosiello, S., Rost, J., Roveto, J., Rowan, W., Rozenblat, R., Ruane, J., Rudakov, D., Ruiz Ruiz, J., Rupani, R., Saarelma, S., Sabbagh, S., Sachdev, J., Saenz, J., Saib, S., Salewski, M., Salmi, A., Sammuli, B., Samuell, C., Sandorfi, A., Sang, C., Sarff, J., Sauter, O., Schaubel, K., Schmitz, L., Schmitz, O., Schneider, J., Schroeder, P., Schultz, K., Schuster, E., Schwartz, J., Sciortino, F., Scotti, F., Scoville, J., Seltzman, A., Seol, S., Sfiligoi, I., Shafer, M., Sharapov, S., Shen, H., Sheng, Z., Shepard, T., Shi, S., Shibata, Y., Shin, G., Shiraki, D., Shousha, R., Si, H., Simmerling, P., Sinclair, G., Sinha, J., Sinha, P., Sips, G., Sizyuk, T., Skinner, C., Sladkomedova, A., Slendebroek, T., Slief, J., Smirnov, R., Smith, J., Smith, S., Smith, D., Snipes, J., Snoep, G., Snyder, A., Snyder, P., Solano, E., Solomon, W., Song, J., Sontag, A., Soukhanovskii, V., Spendlove, J., Spong, D., Squire, J., Srinivasan, C., Stacey, W., Staebler, G., Stagner, L., Stange, T., Stangeby, P., Stefan, R., Stemprok, R., Stephan, D., Stillerman, J., Stoltzfus-Dueck, T., Stonecipher, W., Storment, S., Strait, E., Su, D., Sugiyama, L., Sun, Y., Sun, P., Sun, Z., Sun, A., Sundstrom, D., Sung, C., Sungcoco, J., Suttrop, W., Suzuki, Y., Suzuki, T., Svyatkovskiy, A., Swee, C., Sweeney, R., Sweetnam, C., Szepesi, G., Takechi, M., Tala, T., Tanaka, K., Tang, X., Tang, S., Tao, Y., Tao, R., Taussig, D., Taylor, T., Teixeira, K., Teo, K., Theodorsen, A., Thomas, D., Thome, K., Thorman, A., Thornton, A., Ti, A., Tillack, M., Timchenko, N., Tinguely, R., Tompkins, R., Tooker, J., Torrezan De Sousa, A., Trevisan, G., Tripathi, S., Trujillo Ochoa, A., Truong, D., Tsui, C., Turco, F., Turnbull, A., Umansky, M., Unterberg, E., Vaezi, P., Vail, P., Valdez, J., Valkis, W., Van Compernolle, B., Van Galen, J., Van Kampen, R., Van Zeeland, M., Verdoolaege, G., Vianello, N., Victor, B., Viezzer, E., Vincena, S., Wade, M., Waelbroeck, F., Wai, J., Wakatsuki, T., Walker, M., Wallace, G., Waltz, R., Wampler, W., Wang, L., Wang, H., Wang, Y., Wang, Z., Wang, G., Ward, S., Watkins, M., Watkins, J., Wehner, W., Wei, Y., Weiland, M., Weisberg, D., Welander, A., White, A., White, R., Wiesen, S., Wilcox, R., Wilks, T., Willensdorfer, M., Wilson, H., Wingen, A., Wolde, M., Wolff, M., Woller, K., Wolz, A., Wong, H., Woodruff, S., Wu, M., Wu, Y., Wukitch, S., Wurden, G., Xiao, W., Xie, R., Xing, Z., Xu, X., Xu, C., Xu, G., Yan, Z., Yang, X., Yang, S., Yokoyama, T., Yoneda, R., Yoshida, M., You, K., Younkin, T., Yu, J., Yu, M., Yu, G., Yuan, Q., Zaidenberg, L., Zakharov, L., Zamengo, A., Zamperini, S., Zarnstorff, M., Zeger, E., Zeller, K., Zeng, L., Zerbini, M., Zhang, L., Zhang, X., Zhang, R., Zhang, B., Zhang, J., Zhao, L., Zhao, B., Zheng, Y., Zheng, L., Zhu, B., Zhu, J., Zhu, Y., Zsutty, M., Zuin, M., Fenstermacher, M, Abbate, J, Abe, S, Abrams, T, Adams, M, Adamson, B, Aiba, N, Akiyama, T, Aleynikov, P, Allen, E, Allen, S, Anand, H, Anderson, J, Andrew, Y, Andrews, T, Appelt, D, Arbon, R, Ashikawa, N, Ashourvan, A, Aslin, M, Asnis, Y, Austin, M, Ayala, D, Bak, J, Bandyopadhyay, I, Banerjee, S, Barada, K, Bardoczi, L, Barr, J, Bass, E, Battaglia, D, Battey, A, Baumgartner, W, Baylor, L, Beckers, J, Beidler, M, Belli, E, Berkery, J, Bernard, T, Bertelli, N, Beurskens, M, Bielajew, R, Bilgili, S, Biswas, B, Blondel, S, Boedo, J, Bogatu, I, Boivin, R, Bolzonella, T, Bongard, M, Bonnin, X, Bonoli, P, Bonotto, M, Bortolon, A, Bose, S, Bosviel, N, Bouwmans, S, Boyer, M, Boyes, W, Bradley, L, Brambila, R, Brennan, D, Bringuier, S, Brodsky, L, Brookman, M, Brooks, J, Brower, D, Brown, G, Brown, W, Burke, M, Burrell, K, Butler, K, Buttery, R, Bykov, I, Byrne, P, Cacheris, A, Callahan, K, Callen, J, Campbell, G, Candy, J, Canik, J, Cano-Megias, P, Cao, N, Carayannopoulos, L, Carlstrom, T, Carrig, W, Carter, T, Cary, W, Casali, L, Cengher, M, Paz, G, Chaban, R, Chan, V, Chapman, B, Char, I, Chattopadhyay, A, Chen, R, Chen, J, Chen, X, Chen, M, Chen, Z, Choi, M, Choi, W, Choi, G, Chousal, L, Chrobak, C, Chrystal, C, Chung, Y, Churchill, R, Cianciosa, M, Clark, J, Clement, M, Coda, S, Cole, A, Collins, C, Conlin, W, Cooper, A, Cordell, J, Coriton, B, Cote, T, Cothran, J, Creely, A, Crocker, N, Crowe, C, Crowley, B, Crowley, T, Cruz-Zabala, D, Cummings, D, Curie, M, Curreli, D, Dal Molin, A, Dannels, B, Dautt-Silva, A, Davda, K, De Tommasi, G, De Vries, P, Degrandchamp, G, Degrassie, J, Demers, D, Denk, S, Depasquale, S, Deshazer, E, Diallo, A, Diem, S, Dimits, A, Ding, R, Ding, S, Ding, W, Do, T, Doane, J, Dong, G, Donovan, D, Drake, J, Drews, W, Drobny, J, Du, X, Du, H, Duarte, V, Dudt, D, Dunn, C, Duran, J, Dvorak, A, Effenberg, F, Eidietis, N, Elder, D, Eldon, D, Ellis, R, Elwasif, W, Ennis, D, Erickson, K, Ernst, D, Fasciana, M, Fedorov, D, Feibush, E, Ferraro, N, Ferreira, J, Ferron, J, Fimognari, P, Finkenthal, D, Fitzpatrick, R, Fox, P, Fox, W, Frassinetti, L, Frerichs, H, Frye, H, Fu, Y, Gage, K, Quiroga, J, Gallo, A, Gao, Q, Garcia, A, Munoz, M, Garnier, D, Garofalo, A, Gattuso, A, Geng, D, Gentle, K, Ghosh, D, Giacomelli, L, Gibson, S, Gilson, E, Giroud, C, Glass, F, Glasser, A, Glibert, D, Gohil, P, Gomez, R, Gomez, S, Gong, X, Gonzales, E, Goodman, A, Gorelov, Y, Graber, V, Granetz, R, Gray, T, Green, D, Greenfield, C, Greenwald, M, Grierson, B, Groebner, R, Grosnickle, W, Groth, M, Grunloh, H, Gu, S, Guo, W, Guo, H, Gupta, P, Guterl, J, Guttenfelder, W, Guzman, T, Haar, S, Hager, R, Hahn, S, Halfmoon, M, Hall, T, Hallatschek, K, Halpern, F, Hammett, G, Han, H, Hansen, E, Hansen, C, Hansink, M, Hanson, J, Hanson, M, Hao, G, Harris, A, Harvey, R, Haskey, S, Hassan, E, Hassanein, A, Hatch, D, Hawryluk, R, Hayashi, W, Heidbrink, W, Herfindal, J, Hicok, J, Hill, D, Hinson, E, Holcomb, C, Holland, L, Holland, C, Hollmann, E, Hollocombe, J, Holm, A, Holmes, I, Holtrop, K, Honda, M, Hong, R, Hood, R, Horton, A, Horvath, L, Hosokawa, M, Houshmandyar, S, Howard, N, Howell, E, Hoyt, D, Hu, W, Hu, Y, Hu, Q, Huang, J, Huang, Y, Hughes, J, Human, T, Humphreys, D, Huynh, P, Hyatt, A, Ibanez, C, Ibarra, L, Icasas, R, Ida, K, Igochine, V, In, Y, Inoue, S, Isayama, A, Izacard, O, Izzo, V, Jackson, A, Jacobsen, G, Jaervinen, A, Jalalvand, A, Janhunen, J, Jardin, S, Jarleblad, H, Jeon, Y, Ji, H, Jian, X, Joffrin, E, Johansen, A, Johnson, C, Johnson, T, Jones, C, Joseph, I, Jubas, D, Junge, B, Kalb, W, Kalling, R, Kamath, C, Kang, J, Kaplan, D, Kaptanoglu, A, Kasdorf, S, Kates-Harbeck, J, Kazantzidis, P, Kellman, A, Kellman, D, Kessel, C, Khumthong, K, Kim, E, Kim, H, Kim, J, Kim, S, Kim, K, Kim, C, Kimura, W, King, M, King, J, Kinsey, J, Kirk, A, Kiyan, B, Kleiner, A, Klevarova, V, Knapp, R, Knolker, M, Ko, W, Kobayashi, T, Koch, E, Kochan, M, Koel, B, Koepke, M, Kohn, A, Kolasinski, R, Kolemen, E, Kostadinova, E, Kostuk, M, Kramer, G, Kriete, D, Kripner, L, Kubota, S, Kulchar, J, Kwon, K, La Haye, R, Laggner, F, Lan, H, Lantsov, R, Lao, L, Esquisabel, A, Lasnier, C, Lau, C, Leard, B, Lee, J, Lee, R, Lee, M, Lee, Y, Lee, C, Lee, S, Lehnen, M, Leonard, A, Leppink, E, Lesher, M, Lestz, J, Leuer, J, Leuthold, N, Li, X, Li, K, Li, E, Li, G, Li, L, Li, Z, Li, J, Li, Y, Lin, Z, Lin, D, Liu, X, Liu, J, Liu, Y, Liu, T, Liu, C, Liu, Z, Liu, D, Liu, A, Loarte-Prieto, A, Lodestro, L, Logan, N, Lohr, J, Lombardo, B, Lore, J, Luan, Q, Luce, T, Di Cortemiglia, T, Luhmann, N, Lunsford, R, Luo, Z, Lvovskiy, A, Lyons, B, Ma, X, Madruga, M, Madsen, B, Maggi, C, Maheshwari, K, Mail, A, Mailloux, J, Maingi, R, Major, M, Makowski, M, Manchanda, R, Marini, C, Marinoni, A, Maris, A, Markovic, T, Marrelli, L, Martin, E, Mateja, J, Matsunaga, G, Maurizio, R, Mauzey, P, Mauzey, D, Mcardle, G, Mcclenaghan, J, Mccollam, K, Mcdevitt, C, Mckay, K, Mckee, G, Mclean, A, Mehta, V, Meier, E, Menard, J, Meneghini, O, Merlo, G, Messer, S, Meyer, W, Michael, C, Michoski, C, Milne, P, Minet, G, Misleh, A, Mitrishkin, Y, Moeller, C, Montes, K, Morales, M, Mordijck, S, Moreau, D, Morosohk, S, Morris, P, Morton, L, Moser, A, Moyer, R, Moynihan, C, Mrazkova, T, Mueller, D, Munaretto, S, Burgos, J, Murphy, C, Murphy, K, Muscatello, C, Myers, C, Nagy, A, Nandipati, G, Navarro, M, Nave, F, Navratil, G, Nazikian, R, Neff, A, Neilson, G, Neiser, T, Neiswanger, W, Nelson, D, Nelson, A, Nespoli, F, Nguyen, R, Nguyen, L, Nguyen, X, Nichols, J, Nocente, M, Nogami, S, Noraky, S, Norausky, N, Nornberg, M, Nygren, R, Odstrcil, T, Ogas, D, Ogorman, T, Ohdachi, S, Ohtani, Y, Okabayashi, M, Okamoto, M, Olavson, L, Olofsson, E, Omullane, M, Oneill, R, Orlov, D, Orvis, W, Osborne, T, Pace, D, Canal, G, Martinez, A, Palacios, L, Pan, C, Pan, Q, Pandit, R, Pandya, M, Pankin, A, Park, Y, Park, J, Parker, S, Parks, P, Parsons, M, Patel, B, Pawley, C, Paz-Soldan, C, Peebles, W, Pelton, S, Perillo, R, Petty, C, Peysson, Y, Pierce, D, Pigarov, A, Pigatto, L, Piglowski, D, Pinches, S, Pinsker, R, Piovesan, P, Piper, N, Pironti, A, Pitts, R, Pizzo, J, Plank, U, Podesta, M, Poli, E, Poli, F, Ponce, D, Popovic, Z, Porkolab, M, Porter, G, Powers, C, Powers, S, Prater, R, Pratt, Q, Pusztai, I, Qian, J, Qin, X, Ra, O, Rafiq, T, Raines, T, Raman, R, Rauch, J, Raymond, A, Rea, C, Reich, M, Reiman, A, Reinhold, S, Reinke, M, Reksoatmodjo, R, Ren, Q, Ren, Y, Ren, J, Rensink, M, Renteria, J, Rhodes, T, Rice, J, Roberts, R, Robinson, J, Fernandez, P, Rognlien, T, Rosenthal, A, Rosiello, S, Rost, J, Roveto, J, Rowan, W, Rozenblat, R, Ruane, J, Rudakov, D, Ruiz, J, Rupani, R, Saarelma, S, Sabbagh, S, Sachdev, J, Saenz, J, Saib, S, Salewski, M, Salmi, A, Sammuli, B, Samuell, C, Sandorfi, A, Sang, C, Sarff, J, Sauter, O, Schaubel, K, Schmitz, L, Schmitz, O, Schneider, J, Schroeder, P, Schultz, K, Schuster, E, Schwartz, J, Sciortino, F, Scotti, F, Scoville, J, Seltzman, A, Seol, S, Sfiligoi, I, Shafer, M, Sharapov, S, Shen, H, Sheng, Z, Shepard, T, Shi, S, Shibata, Y, Shin, G, Shiraki, D, Shousha, R, Si, H, Simmerling, P, Sinclair, G, Sinha, J, Sinha, P, Sips, G, Sizyuk, T, Skinner, C, Sladkomedova, A, Slendebroek, T, Slief, J, Smirnov, R, Smith, J, Smith, S, Smith, D, Snipes, J, Snoep, G, Snyder, A, Snyder, P, Solano, E, Solomon, W, Song, J, Sontag, A, Soukhanovskii, V, Spendlove, J, Spong, D, Squire, J, Srinivasan, C, Stacey, W, Staebler, G, Stagner, L, Stange, T, Stangeby, P, Stefan, R, Stemprok, R, Stephan, D, Stillerman, J, Stoltzfus-Dueck, T, Stonecipher, W, Storment, S, Strait, E, Su, D, Sugiyama, L, Sun, Y, Sun, P, Sun, Z, Sun, A, Sundstrom, D, Sung, C, Sungcoco, J, Suttrop, W, Suzuki, Y, Suzuki, T, Svyatkovskiy, A, Swee, C, Sweeney, R, Sweetnam, C, Szepesi, G, Takechi, M, Tala, T, Tanaka, K, Tang, X, Tang, S, Tao, Y, Tao, R, Taussig, D, Taylor, T, Teixeira, K, Teo, K, Theodorsen, A, Thomas, D, Thome, K, Thorman, A, Thornton, A, Ti, A, Tillack, M, Timchenko, N, Tinguely, R, Tompkins, R, Tooker, J, De Sousa, A, Trevisan, G, Tripathi, S, Ochoa, A, Truong, D, Tsui, C, Turco, F, Turnbull, A, Umansky, M, Unterberg, E, Vaezi, P, Vail, P, Valdez, J, Valkis, W, Van Compernolle, B, Van Galen, J, Van Kampen, R, Van Zeeland, M, Verdoolaege, G, Vianello, N, Victor, B, Viezzer, E, Vincena, S, Wade, M, Waelbroeck, F, Wai, J, Wakatsuki, T, Walker, M, Wallace, G, Waltz, R, Wampler, W, Wang, L, Wang, H, Wang, Y, Wang, Z, Wang, G, Ward, S, Watkins, M, Watkins, J, Wehner, W, Wei, Y, Weiland, M, Weisberg, D, Welander, A, White, A, White, R, Wiesen, S, Wilcox, R, Wilks, T, Willensdorfer, M, Wilson, H, Wingen, A, Wolde, M, Wolff, M, Woller, K, Wolz, A, Wong, H, Woodruff, S, Wu, M, Wu, Y, Wukitch, S, Wurden, G, Xiao, W, Xie, R, Xing, Z, Xu, X, Xu, C, Xu, G, Yan, Z, Yang, X, Yang, S, Yokoyama, T, Yoneda, R, Yoshida, M, You, K, Younkin, T, Yu, J, Yu, M, Yu, G, Yuan, Q, Zaidenberg, L, Zakharov, L, Zamengo, A, Zamperini, S, Zarnstorff, M, Zeger, E, Zeller, K, Zeng, L, Zerbini, M, Zhang, L, Zhang, X, Zhang, R, Zhang, B, Zhang, J, Zhao, L, Zhao, B, Zheng, Y, Zheng, L, Zhu, B, Zhu, J, Zhu, Y, Zsutty, M, Zuin, M, Lawrence Livermore National Laboratory, Princeton Plasma Physics Laboratory, Princeton University, General Atomics, Max-Planck-Institut für Plasmaphysik, Imperial College London, National Institute for Fusion Science, Universidade de São Paulo, University of Texas at Austin, ITER, College of William and Mary, University of California Los Angeles, University of California San Diego, Columbia University, Massachusetts Institute of Technology, Oak Ridge National Laboratory, Eindhoven University of Technology, Oak Ridge Associated Universities, West Virginia University, University of Tennessee, Knoxville, National Research Council of Italy, Stony Brook University, Purdue University, University of Seville, University of Science and Technology of China, Carnegie Mellon University, Institute for Plasma Research, Peking University, University of California Davis, University of California Irvine, Commonwealth Fusion Systems, University of Liverpool, University of Illinois at Urbana-Champaign, University of Milan - Bicocca, Georgia Institute of Technology, Southwestern Institute of Physics, University of Toronto, Auburn University, Polytechnic University of Turin, Universidade Lisboa, Association CCFE, KTH Royal Institute of Technology, San Diego State University, Durham University, Lehigh University, Fusion and Plasma Physics, University of Washington, Department of Applied Physics, Sandia National Laboratories, Ghent University, Technical University of Denmark, CEA, University of Colorado Boulder, Harvard University, National Technical University of Athens, Coventry University, University of Stuttgart, Czech Academy of Sciences, Harvey Mudd College, Seoul National University, Donghua University, University of York, Dalian University of Technology, University of California Berkeley, Los Alamos National Laboratory, United States Department of Energy, University of British Columbia, Pacific Northwest National Laboratory, University of Wisconsin, Michigan State University, University of Strathclyde, Pennsylvania State University, Rensselaer Polytechnic Institute, University of Southern California, Chalmers University of Technology, University of Virginia, University of Naples Federico II, University of Oxford, VTT Technical Research Centre of Finland, National Institute of Technology, University of Connecticut, DIFFER, CIEMAT, Hanyang University, Brigham Young University, UiT The Arctic University of Norway, Australian National University, Russian Research Centre Kurchatov Institute, Forschungszentrum Jülich, Zhejiang University, The University of Tokyo, University of Michigan, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Aalto-yliopisto, Aalto University, DIII-D Team, Complex Ionized Media, Elementary Processes in Gas Discharges, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, and Control Systems Technology
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Technology and Engineering ,DIII-D ,Nuclear engineering ,TOKAMAKS ,MITIGATION ,law.invention ,Plasma physics ,mitigation ,law ,plasma physic ,tokamak ,Physics ,Core-edge integration ,Basis (linear algebra) ,plasma physics ,core-edge integration ,scenarios ,Fusion power ,Condensed Matter Physics ,SCENARIOS ,fusion energy ,Fusion energy - Abstract
Funding Information: This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698 and DE-AC52-07NA27344. Publisher Copyright: © 2022 IAEA, Vienna. DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
- Published
- 2022
- Full Text
- View/download PDF
36. Validation of realistic Monte Carlo plasma gamma-ray source on JET discharges
- Author
-
??ohar, A, Nocente, M, Kos, B, ??tancar, ?, Rebai, M, Rigamonti, D, Craciunescu, T, Gorelenkova, M, Kazakov, Y, Kiptily, V, Snoj, L, Tardocchi, M, Lengar, I, Contributors, J, A. ??ohar, M. Nocente, B. Kos, ??. ??tancar, M. Rebai, D. Rigamonti, T. Craciunescu, M. Gorelenkova, Ye. O. Kazakov, V. G. Kiptily, L. Snoj, M. Tardocchi, I. Lengar, JET Contributors, ??ohar, A, Nocente, M, Kos, B, ??tancar, ?, Rebai, M, Rigamonti, D, Craciunescu, T, Gorelenkova, M, Kazakov, Y, Kiptily, V, Snoj, L, Tardocchi, M, Lengar, I, Contributors, J, A. ??ohar, M. Nocente, B. Kos, ??. ??tancar, M. Rebai, D. Rigamonti, T. Craciunescu, M. Gorelenkova, Ye. O. Kazakov, V. G. Kiptily, L. Snoj, M. Tardocchi, I. Lengar, and JET Contributors
- Abstract
A novel modelling methodology has been developed for the creation of a realistic plasma gamma-ray source for Monte Carlo transport simulations in the tokamak JET. The methodology couples the TRANSP code for plasma transport calculations with the MCNP Monte Carlo particle transport code, thus connecting plasma physics with gamma-ray transport. This paper presents the validation of the developed source methodology by comparing calculated gamma-ray spectra with measurements performed at JET. The validation focuses on gamma-ray spectra measured by the tangential gamma-ray spectrometer during two JET three ion RF scenario discharges, performed in the JET 2019 deuterium experimental campaign. For validation the calculated plasma gamma-ray spectrum was combined with the neutron induced prompt gamma-ray background, originating in the vacuum vessel, and scaled to absolute values calculating the total number of plasma gamma-ray and neutron emitting reactions. The comparison between calculated and measured gamma-ray spectra shows good agreement with the shape of the calculated gamma-ray spectra matching that of measurements for both studied discharges. Moreover, the calculated absolute values of the gamma-ray spectra were of the same order of magnitude at the position of the gamma-ray detector located at the end of a long line-of-sight in a biological shield. The comparison has validated the developed plasma gamma-ray source methodology for MCNP photon transport calculations at JET. The validation provides a basis for the developed plasma gamma-ray source to be used as a support for the development of future tokamaks such as DEMO.
- Published
- 2022
37. Physics of runaway electrons with shattered pellet injection at JET
- Author
-
Reux, C, Paz-Soldan, C, Eidietis, N, Lehnen, M, Aleynikov, P, Silburn, S, Bandaru, V, Ficker, O, Hoelzl, M, M Hollmann, E, Jachmich, S, Joffrin, E, J Lomas, P, Rimini, F, Baylor, L, Bleasdale, A, Calacci, L, Causa, F, Carnevale, D, Coffey, I, Craven, D, Dal Molin, A, de la Luna, E, De Tommasi, G, Garcia, J, Gebhart, T, Giacomelli, L, Huber, A, Khilkevich, E, Lowry, C, Macusova, E, Manzanares, A, Nocente, M, Panontin, E, Papp, G, Pautasso, G, Peacock, A, Plyusnin, V, Shevelev, A, Shiraki, D, Sommariva, C, Sozzi, C, Sridhar, S, Sweeney, R, Szepesi, G, A Tinguely, R, Wilson, J, C Reux, C Paz-Soldan, N Eidietis, M Lehnen, P Aleynikov, S Silburn, V Bandaru, O Ficker, M Hoelzl, E M Hollmann, S Jachmich, E Joffrin, P J Lomas, F Rimini, L Baylor, A Bleasdale, L Calacci, F Causa, D Carnevale, I Coffey, D Craven, A Dal Molin, E de la Luna, G De Tommasi, J Garcia, T Gebhart, L Giacomelli, A Huber, E Khilkevich, C Lowry, E Macusova, A Manzanares, M Nocente, E Panontin, G Papp, G Pautasso, A Peacock, V Plyusnin, A Shevelev, D Shiraki, C Sommariva, C Sozzi, S Sridhar, R Sweeney, G Szepesi, R A Tinguely, J Wilson, Reux, C, Paz-Soldan, C, Eidietis, N, Lehnen, M, Aleynikov, P, Silburn, S, Bandaru, V, Ficker, O, Hoelzl, M, M Hollmann, E, Jachmich, S, Joffrin, E, J Lomas, P, Rimini, F, Baylor, L, Bleasdale, A, Calacci, L, Causa, F, Carnevale, D, Coffey, I, Craven, D, Dal Molin, A, de la Luna, E, De Tommasi, G, Garcia, J, Gebhart, T, Giacomelli, L, Huber, A, Khilkevich, E, Lowry, C, Macusova, E, Manzanares, A, Nocente, M, Panontin, E, Papp, G, Pautasso, G, Peacock, A, Plyusnin, V, Shevelev, A, Shiraki, D, Sommariva, C, Sozzi, C, Sridhar, S, Sweeney, R, Szepesi, G, A Tinguely, R, Wilson, J, C Reux, C Paz-Soldan, N Eidietis, M Lehnen, P Aleynikov, S Silburn, V Bandaru, O Ficker, M Hoelzl, E M Hollmann, S Jachmich, E Joffrin, P J Lomas, F Rimini, L Baylor, A Bleasdale, L Calacci, F Causa, D Carnevale, I Coffey, D Craven, A Dal Molin, E de la Luna, G De Tommasi, J Garcia, T Gebhart, L Giacomelli, A Huber, E Khilkevich, C Lowry, E Macusova, A Manzanares, M Nocente, E Panontin, G Papp, G Pautasso, A Peacock, V Plyusnin, A Shevelev, D Shiraki, C Sommariva, C Sozzi, S Sridhar, R Sweeney, G Szepesi, R A Tinguely, and J Wilson
- Abstract
Runaway electrons (REs) created during tokamak disruptions pose a threat to the reliable operation of future larger machines. Experiments using shattered pellet injection (SPI) have been carried out at the JET tokamak to investigate ways to prevent their generation or suppress them if avoidance is not sufficient. Avoidance is possible if the SPI contains a sufficiently low fraction of high-Z material, or if it is fired early in advance of a disruption prone to runaway generation. These results are consistent with previous similar findings obtained with Massive Gas Injection. Suppression of an already accelerated beam is not efficient using High-Z material, but deuterium leads to harmless terminations without heat loads. This effect is due to the combination of a large magnetohydrodynamic instability scattering REs on a large area and the absence of runaway regeneration during the subsequent current collapse thanks to the flushing of high-Z impurities from the runaway companion plasma. This effect also works in situations where the runaway beam moves upwards and undergoes scraping-off on the wall.
- Published
- 2022
38. Gamma-ray measurements in D fusion plasma experiments on JET
- Author
-
Iliasova, M, Shevelev, A, Khilkevich, E, Kazakov, Y, Kiptily, V, Nocente, M, Giacomelli, L, Craciunescu, T, Stancar, Z, Dal Molin, A, Rigamonti, D, Tardocchi, M, Doinikov, D, Gorini, G, Naidenov, V, Polunovsky, I, Gin, D, M. Iliasova, A. Shevelev, E. Khilkevich, Ye. Kazakov, V. Kiptily, M. Nocente, L. Giacomelli, T. Craciunescu, Z. Stancar, A. Dal Molin, D. Rigamonti, M. Tardocchi, D. Doinikov, G. Gorini, V. Naidenov, I. Polunovsky, D. Gin, Iliasova, M, Shevelev, A, Khilkevich, E, Kazakov, Y, Kiptily, V, Nocente, M, Giacomelli, L, Craciunescu, T, Stancar, Z, Dal Molin, A, Rigamonti, D, Tardocchi, M, Doinikov, D, Gorini, G, Naidenov, V, Polunovsky, I, Gin, D, M. Iliasova, A. Shevelev, E. Khilkevich, Ye. Kazakov, V. Kiptily, M. Nocente, L. Giacomelli, T. Craciunescu, Z. Stancar, A. Dal Molin, D. Rigamonti, M. Tardocchi, D. Doinikov, G. Gorini, V. Naidenov, I. Polunovsky, and D. Gin
- Abstract
Using capabilities of the gamma-ray spectrometry, fusion born alpha-particles were studied in recent D-3He plasma experiments on JET. A substantial population of the alpha-particles was generated in the He-3-rich plasma due to the He-3(D, p)He-4 reaction. Fast deuterium ions of the neutral beam injection (NBI) heating were accelerated to MeV energies with three-ion scenario D-(DNBI)-He-3 using radio frequency waves in the ion cyclotron range of frequencies (ICRF). A high reaction rate allowed to measure the alpha-particle production rate and their spatial distribution in the plasma by detecting 16.7-MeV gamma-rays from the He-3(D, y)Li-5 reaction, which is a weak branch of He-3(D, p)He-4 reaction. A branching ratio of gamma-ray transitions to the ground and the first excited states of Li-5 was obtained. Due to the beryllium is a main impurity of JET plasmas, intensive gamma-rays from the Be-9(D, ny)10B, Be-9(D, py)Be-10 and Be-9(a, ny)C-12 reactions were observed. Exploitation of the reaction cross-sections and the Doppler shape analysis (DSA) of gamma-lines in the recorded spectra provided the possibility to reconstruct distribution functions of the confined D-ions and the fusion-born alpha-particles.
- Published
- 2022
39. Alfven cascade eigenmodes above the TAE-frequency and localization of Alfven modes in D-He-3 plasmas on JET
- Author
-
M. Dreval, S.E. Sharapov, Ye.O. Kazakov, J. Ongena, M. Nocente, R. Calado, R. Coelho, J. Ferreira, A. Figueiredo, M. Fitzgerald, J. Garcia, C. Giroud, N.C. Hawkes, V.G. Kiptily, F. Nabais, M.F.F. Nave, H. Weisen, T. Craciunescu, M. Salewski, Ž. Štancar, null JET Contributors, Dreval, M, Sharapov, S, Kazakov, Y, Ongena, J, Nocente, M, Calado, R, Coelho, R, Ferreira, J, Figueiredo, A, Fitzgerald, M, Garcia, J, Giroud, C, Hawkes, N, Kiptily, V, Nabais, F, Nave, M, Weisen, H, Craciunescu, T, Salewski, M, and Stancar, A
- Subjects
profile ,Nuclear and High Energy Physics ,3-ion ICRF ,JET ,RSAE ,MISHKA code ,Condensed Matter Physics ,AE mode localization ,AC - Abstract
Various types of Alfvén eigenmodes (AEs) have been destabilized by fast ions over a broad frequency range from ∼80 kHz to ∼700 kHz in a series of JET experiments in mixed D–3He plasmas heated with the three-ion ICRF scenario (2020 Nocente et al Nucl. Fusion 60 124006). In this paper, we identify the radial localization of AEs using an X-mode reflectometer, a multiline interferometer and soft x-ray diagnostics. The analysis is focused on the most representative example of these measurements in JET pulse #95691, where two different types of Alfvén cascade (AC) eigenmodes were observed. These modes originate from the presence of a local minimum of the safety factor q min. In addition to ACs with frequencies below the frequency of toroidal Alfvén eigenmodes (TAEs), ACs with frequencies above the TAE frequency were destabilized by energetic ions. Both low- (f ≈ 80–180 kHz) and high-frequency (f ≈ 330–450 kHz) ACs were localized in the central regions of the plasma. The characteristics of the high-frequency ACs are investigated in detail numerically using HELENA, CSCAS and MISHKA codes. The resonant conditions for the mode excitation are found to be determined by passing ions of rather high energy of several hundred keV and similar to those established in JT-60U with negative-ion-based NBI (2005 Takechi et al Phys. Plasmas 12 082509). The computed radial mode structure is found to be consistent with the experimental measurements. In contrast to low-frequency ACs observed most often, the frequency of the high-frequency ACs decreases with time as the value of q min decreases. This feature is in a qualitative agreement with the analytical model of the high-frequency ACs in Breizman et al (2003 Phys. Plasmas 10 3649). The high-frequency AC could be highly relevant for future ITER and fusion reactor plasmas dominated by ∼MeV energetic ions, including a significant population of passing fast ions.
- Published
- 2022
- Full Text
- View/download PDF
40. Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
- Author
-
U. Stroth, D. Aguiam, E. Alessi, C. Angioni, N. Arden, R. Arredondo Parra, V. Artigues, O. Asunta, M. Balden, V. Bandaru, A. Banon-Navarro, K. Behler, A. Bergmann, M. Bergmann, J. Bernardo, M. Bernert, A. Biancalani, R. Bielajew, R. Bilato, G. Birkenmeier, T. Blanken, V. Bobkov, A. Bock, T. Body, T. Bolzonella, N. Bonanomi, A. Bortolon, B. Böswirth, C. Bottereau, A. Bottino, H. van den Brand, M. Brenzke, S. Brezinsek, D. Brida, F. Brochard, C. Bruhn, J. Buchanan, A. Buhler, A. Burckhart, Y. Camenen, B. Cannas, P. Cano Megias, D. Carlton, M. Carr, P. Carvalho, C. Castaldo, M. Cavedon, C. Cazzaniga, C. Challis, A. Chankin, C. Cianfarani, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, L. Colas, G. Conway, S. Costea, D. Coster, T. Cote, A.J. Creely, G. Croci, D.J. Cruz Zabala, G. Cseh, A. Czarnecka, I. Cziegler, O. D’Arcangelo, A. Dal Molin, P. David, C. Day, M. de Baar, P. de Marné, R. Delogu, S. Denk, P. Denner, A. Di Siena, J.J. Dominguez Palacios Durán, D. Dunai, A. Drenik, M. Dreval, R. Drube, M. Dunne, B.P. Duval, R. Dux, T. Eich, S. Elgeti, A. Encheva, K. Engelhardt, B. Erdös, I. Erofeev, B. Esposito, E. Fable, M. Faitsch, U. Fantz, M. Farnik, H. Faugel, F. Felici, O. Ficker, S. Fietz, A. Figueredo, R. Fischer, O. Ford, L. Frassinetti, M. Fröschle, G. Fuchert, J.C. Fuchs, H. Fünfgelder, S. Futatani, K. Galazka, J. Galdon-Quiroga, D. Gallart Escolà, A. Gallo, Y. Gao, S. Garavaglia, M. Garcia Muñoz, B. Geiger, L. Giannone, S. Gibson, L. Gil, E. Giovannozzi, S. Glöggler, M. Gobbin, J. Gonzalez Martin, T. Goodman, G. Gorini, T. Görler, D. Gradic, G. Granucci, A. Gräter, H. Greuner, M. Griener, M. Groth, A. Gude, L. Guimarais, S. Günter, G. Haas, A.H. Hakola, C. Ham, T. Happel, N. den Harder, G. Harrer, J. Harrison, V. Hauer, T. Hayward-Schneider, B. Heinemann, T. Hellsten, S. Henderson, P. Hennequin, A. Herrmann, E. Heyn, F. Hitzler, J. Hobirk, K. Höfler, J.H. Holm, M. Hölzl, C. Hopf, L. Horvath, T. Höschen, A. Houben, A. Hubbard, A. Huber, K. Hunger, V. Igochine, M. Iliasova, T. Ilkei, K. Insulander Björk, C. Ionita-Schrittwieser, I. Ivanova-Stanik, W. Jacob, N. Jaksic, F. Janky, A. Jansen van Vuuren, A. Jardin, F. Jaulmes, F. Jenko, T. Jensen, E. Joffrin, A. Kallenbach, S. Kálvin, M. Kantor, A. Kappatou, O. Kardaun, J. Karhunen, C.-P. Käsemann, S. Kasilov, A. Kendl, W. Kernbichler, E. Khilkevitch, A. Kirk, S. Kjer Hansen, V. Klevarova, G. Kocsis, M. Koleva, M. Komm, M. Kong, A. Krämer-Flecken, K. Krieger, A. Krivska, O. Kudlacek, T. Kurki-Suonio, B. Kurzan, B. Labit, K. Lackner, F. Laggner, A. Lahtinen, P.T. Lang, P. Lauber, N. Leuthold, L. Li, J. Likonen, O. Linder, B. Lipschultz, Y. Liu, A. Lohs, Z. Lu, T. Luda di Cortemiglia, N.C. Luhmann, T. Lunt, A. Lyssoivan, T. Maceina, J. Madsen, A. Magnanimo, H. Maier, J. Mailloux, R. Maingi, O. Maj, E. Maljaars, P. Manas, A. Mancini, A. Manhard, P. Mantica, M. Mantsinen, P. Manz, M. Maraschek, C. Marchetto, L. Marrelli, P. Martin, A. Martitsch, F. Matos, M. Mayer, M.-L. Mayoral, D. Mazon, P.J. McCarthy, R. McDermott, R. Merkel, A. Merle, D. Meshcheriakov, H. Meyer, D. Milanesio, P. Molina Cabrera, F. Monaco, M. Muraca, F. Nabais, V. Naulin, R. Nazikian, R.D. Nem, A. Nemes-Czopf, G. Neu, R. Neu, A.H. Nielsen, S.K. Nielsen, T. Nishizawa, M. Nocente, J.-M. Noterdaeme, I. Novikau, S. Nowak, M. Oberkofler, R. Ochoukov, J. Olsen, F. Orain, F. Palermo, O. Pan, G. Papp, I. Paradela Perez, A. Pau, G. Pautasso, C. Paz-Soldan, P. Petersson, P. Piovesan, C. Piron, U. Plank, B. Plaum, B. Plöck, V. Plyusnin, G. Pokol, E. Poli, L. Porte, T. Pütterich, M. Ramisch, J. Rasmussen, G. Ratta, S. Ratynskaia, G. Raupp, D. Réfy, M. Reich, F. Reimold, D. Reiser, M. Reisner, D. Reiter, T. Ribeiro, R. Riedl, J. Riesch, D. Rittich, J.F. Rivero Rodriguez, G. Rocchi, P. Rodriguez-Fernandez, M. Rodriguez-Ramos, V. Rohde, G. Ronchi, A. Ross, M. Rott, M. Rubel, D.A. Ryan, F. Ryter, S. Saarelma, M. Salewski, A. Salmi, O. Samoylov, L. Sanchis Sanchez, J. Santos, O. Sauter, G. Schall, K. Schlüter, K. Schmid, O. Schmitz, P.A. Schneider, R. Schrittwieser, M. Schubert, C. Schuster, T. Schwarz-Selinger, J. Schweinzer, E. Seliunin, A. Shabbir, A. Shalpegin, S. Sharapov, U. Sheikh, A. Shevelev, G. Sias, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva, C. Silva, D. Silvagni, J. Simpson, S. Sipilä, E. Smigelskis, A. Snicker, E. Solano, C. Sommariva, C. Sozzi, G. Spizzo, M. Spolaore, A. Stegmeir, M. Stejner, J. Stober, E. Strumberge, G. Suarez Lopez, H.-J. Sun, W. Suttrop, E. Sytova, T. Szepesi, B. Tál, T. Tala, G. Tardini, M. Tardocchi, D. Terranova, M. Teschke, E. Thorén, W. Tierens, D. Told, W. Treutterer, G. Trevisan, E. Trier, M. Tripský, M. Usoltceva, M. Valisa, M. Valovic, M. van Zeeland, F. Vannini, B. Vanovac, P. Varela, S. Varoutis, N. Vianello, J. Vicente, G. Verdoolaege, T. Vierle, E. Viezzer, I. Voitsekhovitch, U. von Toussaint, D. Wagner, X. Wang, M. Weiland, A.E. White, M. Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, Q. Yang, Q. Yu, R. Zagórski, I. Zammuto, T. Zehetbauer, W. Zhang, W. Zholobenko, M. Zilker, A. Zito, H. Zohm, S. Zoletnik, the EUROfusion MST1 Team, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Aix Marseille Université (AMU), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), EUROfusion MST1 Team, Barcelona Supercomputing Center, Department of Applied Physics, Aalto-yliopisto, Aalto University, Stroth, U, Aguiam, D, Alessi, E, Angioni, C, Arden, N, Parra, R, Artigues, V, Asunta, O, Balden, M, Bandaru, V, Banon-Navarro, A, Behler, K, Bergmann, A, Bergmann, M, Bernardo, J, Bernert, M, Biancalani, A, Bielajew, R, Bilato, R, Birkenmeier, G, Blanken, T, Bobkov, V, Bock, A, Body, T, Bolzonella, T, Bonanomi, N, Bortolon, A, Boswirth, B, Bottereau, C, Bottino, A, Van Den Brand, H, Brenzke, M, Brezinsek, S, Brida, D, Brochard, F, Bruhn, C, Buchanan, J, Buhler, A, Burckhart, A, Camenen, Y, Cannas, B, Megias, P, Carlton, D, Carr, M, Carvalho, P, Castaldo, C, Cavedon, M, Cazzaniga, C, Challis, C, Chankin, A, Cianfarani, C, Clairet, F, Coda, S, Coelho, R, Coenen, J, Colas, L, Conway, G, Costea, S, Coster, D, Cote, T, Creely, A, Croci, G, Zabala, D, Cseh, G, Czarnecka, A, Cziegler, I, D'Arcangelo, O, Molin, A, David, P, Day, C, De Baar, M, De Marne, P, Delogu, R, Denk, S, Denner, P, Di Siena, A, Palacios Duran, J, Dunai, D, Drenik, A, Dreval, M, Drube, R, Dunne, M, Duval, B, Dux, R, Eich, T, Elgeti, S, Encheva, A, Engelhardt, K, Erdos, B, Erofeev, I, Esposito, B, Fable, E, Faitsch, M, Fantz, U, Farnik, M, Faugel, H, Felici, F, Ficker, O, Fietz, S, Figueredo, A, Fischer, R, Ford, O, Frassinetti, L, Froschle, M, Fuchert, G, Fuchs, J, Funfgelder, H, Futatani, S, Galazka, K, Galdon-Quiroga, J, Escola, D, Gallo, A, Gao, Y, Garavaglia, S, Munoz, M, Geiger, B, Giannone, L, Gibson, S, Gil, L, Giovannozzi, E, Gloggler, S, Gobbin, M, Martin, J, Goodman, T, Gorini, G, Gorler, T, Gradic, D, Granucci, G, Grater, A, Greuner, H, Griener, M, Groth, M, Gude, A, Guimarais, L, Gunter, S, Haas, G, Hakola, A, Ham, C, Happel, T, Den Harder, N, Harrer, G, Harrison, J, Hauer, V, Hayward-Schneider, T, Heinemann, B, Hellsten, T, Henderson, S, Hennequin, P, Herrmann, A, Heyn, E, Hitzler, F, Hobirk, J, Hofler, K, Holm, J, Holzl, M, Hopf, C, Horvath, L, Hoschen, T, Houben, A, Hubbard, A, Huber, A, Hunger, K, Igochine, V, Iliasova, M, Ilkei, T, Bjork, K, Ionita-Schrittwieser, C, Ivanova-Stanik, I, Jacob, W, Jaksic, N, Janky, F, Jansen Van Vuuren, A, Jardin, A, Jaulmes, F, Jenko, F, Jensen, T, Joffrin, E, Kallenbach, A, Kalvin, S, Kantor, M, Kappatou, A, Kardaun, O, Karhunen, J, Kasemann, C, Kasilov, S, Kendl, A, Kernbichler, W, Khilkevitch, E, Kirk, A, Hansen, S, Klevarova, V, Kocsis, G, Koleva, M, Komm, M, Kong, M, Kramer-Flecken, A, Krieger, K, Krivska, A, Kudlacek, O, Kurki-Suonio, T, Kurzan, B, Labit, B, Lackner, K, Laggner, F, Lahtinen, A, Lang, P, Lauber, P, Leuthold, N, Li, L, Likonen, J, Linder, O, Lipschultz, B, Liu, Y, Lohs, A, Lu, Z, Luda Di Cortemiglia, T, Luhmann, N, Lunt, T, Lyssoivan, A, Maceina, T, Madsen, J, Magnanimo, A, Maier, H, Mailloux, J, Maingi, R, Maj, O, Maljaars, E, Manas, P, Mancini, A, Manhard, A, Mantica, P, Mantsinen, M, Manz, P, Maraschek, M, Marchetto, C, Marrelli, L, Martin, P, Martitsch, A, Matos, F, Mayer, M, Mayoral, M, Mazon, D, Mccarthy, P, Mcdermott, R, Merkel, R, Merle, A, Meshcheriakov, D, Meyer, H, Milanesio, D, Cabrera, P, Monaco, F, Muraca, M, Nabais, F, Naulin, V, Nazikian, R, Nem, R, Nemes-Czopf, A, Neu, G, Neu, R, Nielsen, A, Nielsen, S, Nishizawa, T, Nocente, M, Noterdaeme, J, Novikau, I, Nowak, S, Oberkofler, M, Ochoukov, R, Olsen, J, Orain, F, Palermo, F, Pan, O, Papp, G, Perez, I, Pau, A, Pautasso, G, Paz-Soldan, C, Petersson, P, Piovesan, P, Piron, C, Plank, U, Plaum, B, Plock, B, Plyusnin, V, Pokol, G, Poli, E, Porte, L, Putterich, T, Ramisch, M, Rasmussen, J, Ratta, G, Ratynskaia, S, Raupp, G, Refy, D, Reich, M, Reimold, F, Reiser, D, Reisner, M, Reiter, D, Ribeiro, T, Riedl, R, Riesch, J, Rittich, D, Rodriguez, J, Rocchi, G, Rodriguez-Fernandez, P, Rodriguez-Ramos, M, Rohde, V, Ronchi, G, Ross, A, Rott, M, Rubel, M, Ryan, D, Ryter, F, Saarelma, S, Salewski, M, Salmi, A, Samoylov, O, Sanchez, L, Santos, J, Sauter, O, Schall, G, Schluter, K, Schmid, K, Schmitz, O, Schneider, P, Schrittwieser, R, Schubert, M, Schuster, C, Schwarz-Selinger, T, Schweinzer, J, Seliunin, E, Shabbir, A, Shalpegin, A, Sharapov, S, Sheikh, U, Shevelev, A, Sias, G, Siccinio, M, Sieglin, B, Sigalov, A, Silva, A, Silva, C, Silvagni, D, Simpson, J, Sipila, S, Smigelskis, E, Snicker, A, Solano, E, Sommariva, C, Sozzi, C, Spizzo, G, Spolaore, M, Stegmeir, A, Stejner, M, Stober, J, Strumberge, E, Lopez, G, Sun, H, Suttrop, W, Sytova, E, Szepesi, T, Tal, B, Tala, T, Tardini, G, Tardocchi, M, Terranova, D, Teschke, M, Thoren, E, Tierens, W, Told, D, Treutterer, W, Trevisan, G, Trier, E, Tripsky, M, Usoltceva, M, Valisa, M, Valovic, M, Van Zeeland, M, Vannini, F, Vanovac, B, Varela, P, Varoutis, S, Vianello, N, Vicente, J, Verdoolaege, G, Vierle, T, Viezzer, E, Voitsekhovitch, I, Von Toussaint, U, Wagner, D, Wang, X, Weiland, M, White, A, Willensdorfer, M, Wiringer, B, Wischmeier, M, Wolf, R, Wolfrum, E, Yang, Q, Yu, Q, Zagorski, R, Zammuto, I, Zehetbauer, T, Zhang, W, Zholobenko, W, Zilker, M, Zito, A, Zohm, H, and Zoletnik, S
- Subjects
Nuclear and High Energy Physics ,Asdex Upgrade ,confinement ,ELLM-free discharges ,sol ,Computer science ,Nuclear engineering ,ALCATOR C-MOD ,UPPER DIVERTOR ,ASDEX Upgrade ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Simulació per ordinador ,alcator c-mod ,ddc:530 ,upper divertor ,ELLM-free discharge ,SOL ,Basis (linear algebra) ,Physics ,turbulence ,transition ,h-mode plasmas ,Condensed Matter Physics ,ddc ,Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria [Àrees temàtiques de la UPC] ,Fusion reactors ,Physics and Astronomy ,CONFINEMENT MODES ,H-MODE PLASMAS ,Physics::Space Physics ,Nuclear fusion ,TURBULENCE ,ddc:620 ,confinement modes ,TRANSITION - Abstract
An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L–H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced Dα H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Peer Reviewed "Article signat per més de 50 autors/es: U. Stroth, D. Aguiam, E. Alessi, C. Angioni, N. Arden, R. Arredondo Parra, V. Artigues, O. Asunta, M. Balden, V. Bandaru, A. Banon-Navarro, K. Behler, A. Bergmann, M. Bergmann, J. Bernardo, M. Bernert, A. Biancalani, R. Bielajew, R. Bilato, G. Birkenmeier, T. Blanken, V. Bobkov, A. Bock, T. Body, T. Bolzonella, N. Bonanomi, A. Bortolon, B. Böswirth, C. Bottereau, A. Bottino, H. van den Brand, M. Brenzke, S. Brezinsek, D. Brida, F. Brochard, C. Bruhn, J. Buchanan, A. Buhler, A. Burckhart, Y. Camenen, B. Cannas, P. Cano Megias, D. Carlton, M. Carr, P. Carvalho, C. Castaldo, M. Cavedon, C. Cazzaniga, C. Challis, A. Chankin, C. Cianfarani, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, L. Colas, G. Conway, S. Costea, D. Coster, T. Cote, A.J. Creely, G. Croci, D.J. Cruz Zabala, G. Cseh, A. Czarnecka, I. Cziegler, O. D'Arcangelo, A. Dal Molin, P. David, C. Day, M. de Baar, P. de Marné, R. Delogu, S. Denk, P. Denner, A. Di Siena, J.J. Dominguez Palacios Durán, D. Dunai, A. Drenik, M. Dreval, R. Drube, M. Dunne, B.P. Duval, R. Dux, T. Eich, S. Elgeti, A. Encheva, K. Engelhardt, B. Erdös, I. Erofeev, B. Esposito, E. Fable, M. Faitsch, U. Fantz, M. Farnik, H. Faugel, F. Felici, O. Ficker, S. Fietz, A. Figueredo, R. Fischer, O. Ford, L. Frassinetti, M. Fröschle, G. Fuchert, J.C. Fuchs, H. Fünfgelder, S. Futatani, K. Galazka, J. Galdon-Quiroga, D. Gallart Escolà, A. Gallo10, Y. Gao11, S. Garavaglia3, M. Garcia Muñoz16, B. Geiger21, L. Giannone1, S. Gibson32, L. Gil2, E. Giovannozzi18, S. Glöggler1, M. Gobbin8, J. Gonzalez Martin, T. Goodman, G. Gorini, T. Görler, D. Gradic, G. Granucci, A. Gräter, H. Greuner, M. Griener, M. Groth, A. Gude, L. Guimarais, S. Günter, G. Haas, A.H. Hakola, C. Ham, T. Happel, N. den Harder, G. Harrer, J. Harrison, V. Hauer, T. Hayward-Schneider, B. Heinemann, T. Hellsten, S. Henderson, P. Hennequin, A. Herrmann, E. Heyn, F. Hitzler, J. Hobirk, K. Höfler, J.H. Holm, M. Hölzl, C. Hopf, L. Horvath, T. Höschen, A. Houben, A. Hubbard, A. Huber, K. Hunger, V. Igochine, M. Iliasova, T. Ilkei, K. Insulander Björk, C. Ionita-Schrittwieser, I. Ivanova-Stanik, W. Jacob, N. Jaksic, F. Janky, A. Jansen van Vuuren, A. Jardin, F. Jaulmes, F. Jenko, T. Jensen, E. Joffrin, A. Kallenbach, S. Kálvin, M. Kantor, A. Kappatou, O. Kardaun, J. Karhunen4, C.-P. Käsemann, S. Kasilov, A. Kendl, W. Kernbichler, E. Khilkevitch, A. Kirk, S. Kjer Hansen, V. Klevarova, G. Kocsis, M. Koleva, M. Komm, M. Kong, A. Krämer-Flecken, K. Krieger, A. Krivska, O. Kudlacek, T. Kurki-Suonio, B. Kurzan, B. Labit, K. Lackner, F. Laggner, A. Lahtinen, P.T. Lang, P. Lauber, N. Leuthold, L. Li, J. Likonen, O. Linder, B. Lipschultz, Y. Liu, A. Lohs, Z. Lu, T. Luda di Cortemiglia, N.C. Luhmann, T. Lunt, A. Lyssoivan, T. Maceina, J. Madsen, A. Magnanimo, H. Maier, J. Mailloux, R. Maingi, O. Maj, E. Maljaars, P. Manas, A. Mancini, A. Manhard, P. Mantica, M. Mantsinen, P. Manz, M. Maraschek, C. Marchetto, L. Marrelli, P. Martin, A. Martitsch, F. Matos, M. Mayer, M.-L. Mayoral, D. Mazon, P.J. McCarthy, R. McDermott, R. Merkel, A. Merle, D. Meshcheriakov, H. Meyer, D. Milanesio, P. Molina Cabrera, F. Monaco, M. Muraca, F. Nabais, V. Naulin, R. Nazikian, R.D. Nem, A. Nemes-Czopf, G. Neu, R. Neu, A.H. Nielsen, S.K. Nielsen, T. Nishizawa, M. Nocente, J.-M. Noterdaeme, I. Novikau, S. Nowak, M. Oberkofler, R. Ochoukov, J. Olsen, F. Orain, F. Palermo, O. Pan, G. Papp, I. Paradela Perez, A. Pau, G. Pautasso, C. Paz-Soldan, P. Petersson, P. Piovesan, C. Piron, U. Plank, B. Plaum, B. Plöck, V. Plyusnin, G. Pokol, E. Poli, L. Porte, T. Pütterich, M. Ramisch, J. Rasmussen, G. Ratta, S. Ratynskaia, G. Raupp, D. Réfy, M. Reich1, F. Reimold, D. Reiser, M. Reisner, D. Reiter, T. Ribeiro, R. Riedl, J. Riesch, D. Rittich, J.F. Rivero Rodriguez, G. Rocchi, P. Rodriguez-Fernandez, M. Rodriguez-Ramos, V. Rohde, G. Ronchi, A. Ross, M. Rott, M. Rubel, D.A. Ryan, F. Ryter, S. Saarelma, M. Salewski, A. Salmi, O. Samoylov, L. Sanchis Sanchez, J. Santos, O. Sauter, G. Schall, K. Schlüter, K. Schmid, O. Schmitz, P.A. Schneider, R. Schrittwieser, M. Schubert, C. Schuster, T. Schwarz-Selinger, J. Schweinzer, E. Seliunin, A. Shabbir, A. Shalpegin, S. Sharapov, U. Sheikh, A. Shevelev, G. Sias, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva, C. Silva, D. Silvagni, J. Simpson, S. Sipilä, E. Smigelskis, A. Snicker, E. Solano, C. Sommariva, C. Sozzi, G. Spizzo, M. Spolaore, A. Stegmeir, M. Stejner, J. Stober, E. Strumberge1, G. Suarez Lopez, H.-J. Sun, W. Suttrop, E. Sytova, T. Szepesi, B. Tál, T. Tala, G. Tardini, M. Tardocchi, D. Terranova, M. Teschke, E. Thorén, W. Tierens, D. Told, W. Treutterer, G. Trevisan, E. Trier, M. Tripský, M. Usoltceva, M. Valisa, M. Valovic, M. van Zeeland, F. Vannini, B. Vanovac, P. Varela, S. Varoutis, N. Vianello, J. Vicente, G. Verdoolaege, T. Vierle, E. Viezzer, I. Voitsekhovitch, U. von Toussaint, D. Wagner, X. Wang, M. Weiland, A.E. White, M. Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, Q. Yang, Q. Yu, R. Zagórski, I. Zammuto, T. Zehetbauer, W. Zhang, W. Zholobenko, M. Zilker, A. Zito, H. Zohm, S. Zoletnik and the EUROfusion MST1 Team "
- Published
- 2022
- Full Text
- View/download PDF
41. Overview of the TCV tokamak experimental programme
- Author
-
H. Reimerdes, M. Agostini, E. Alessi, S. Alberti, Y. Andrebe, H. Arnichand, J. Balbin, F. Bagnato, M. Baquero-Ruiz, M. Bernert, W. Bin, P. Blanchard, T.C. Blanken, J.A. Boedo, D. Brida, S. Brunner, C. Bogar, O. Bogar, T. Bolzonella, F. Bombarda, F. Bouquey, C. Bowman, D. Brunetti, J. Buermans, H. Bufferand, L. Calacci, Y. Camenen, S. Carli, D. Carnevale, F. Carpanese, F. Causa, J. Cavalier, M. Cavedon, J.A. Cazabonne, J. Cerovsky, R. Chandra, A. Chandrarajan Jayalekshmi, O. Chellaï, P. Chmielewski, D. Choi, G. Ciraolo, I.G.J. Classen, S. Coda, C. Colandrea, A. Dal Molin, P. David, M.R. de Baar, J. Decker, W. Dekeyser, H. de Oliveira, D. Douai, M. Dreval, M.G. Dunne, B.P. Duval, S. Elmore, O. Embreus, F. Eriksson, M. Faitsch, G. Falchetto, M. Farnik, A. Fasoli, N. Fedorczak, F. Felici, O. Février, O. Ficker, A. Fil, M. Fontana, E. Fransson, L. Frassinetti, I. Furno, D.S. Gahle, D. Galassi, K. Galazka, C. Galperti, S. Garavaglia, M. Garcia-Munoz, B. Geiger, M. Giacomin, G. Giruzzi, M. Gobbin, T. Golfinopoulos, T. Goodman, S. Gorno, G. Granucci, J.P. Graves, M. Griener, M. Gruca, T. Gyergyek, R. Haelterman, A. Hakola, W. Han, T. Happel, G. Harrer, J.R. Harrison, S. Henderson, G.M.D. Hogeweij, J.-P. Hogge, M. Hoppe, J. Horacek, Z. Huang, A. Iantchenko, P. Innocente, K. Insulander Björk, C. Ionita-Schrittweiser, H. Isliker, A. Jardin, R.J.E. Jaspers, R. Karimov, A.N. Karpushov, Y. Kazakov, M. Komm, M. Kong, J. Kovacic, O. Krutkin, O. Kudlacek, U. Kumar, R. Kwiatkowski, B. Labit, L. Laguardia, J.T. Lammers, E. Laribi, E. Laszynska, A. Lazaros, O. Linder, B. Linehan, B. Lipschultz, X. Llobet, J. Loizu, T. Lunt, E. Macusova, Y. Marandet, M. Maraschek, G. Marceca, C. Marchetto, S. Marchioni, E.S. Marmar, Y. Martin, L. Martinelli, F. Matos, R. Maurizio, M.-L. Mayoral, D. Mazon, V. Menkovski, A. Merle, G. Merlo, H. Meyer, K. Mikszuta-Michalik, P.A. Molina Cabrera, J. Morales, J.-M. Moret, A. Moro, D. Moulton, H. Muhammed, O. Myatra, D. Mykytchuk, F. Napoli, R.D. Nem, A.H. Nielsen, M. Nocente, S. Nowak, N. Offeddu, J. Olsen, F.P. Orsitto, O. Pan, G. Papp, A. Pau, A. Perek, F. Pesamosca, Y. Peysson, L. Pigatto, C. Piron, M. Poradzinski, L. Porte, T. Pütterich, M. Rabinski, H. Raj, J.J. Rasmussen, G.A. Rattá, T. Ravensbergen, D. Ricci, P. Ricci, N. Rispoli, F. Riva, J.F. Rivero-Rodriguez, M. Salewski, O. Sauter, B.S. Schmidt, R. Schrittweiser, S. Sharapov, U.A. Sheikh, B. Sieglin, M. Silva, A. Smolders, A. Snicker, C. Sozzi, M. Spolaore, A. Stagni, L. Stipani, G. Sun, T. Tala, P. Tamain, K. Tanaka, A. Tema Biwole, D. Terranova, J.L. Terry, D. Testa, C. Theiler, A. Thornton, A. Thrysøe, H. Torreblanca, C.K. Tsui, D. Vaccaro, M. Vallar, M. van Berkel, D. Van Eester, R.J.R. van Kampen, S. Van Mulders, K. Verhaegh, T. Verhaeghe, N. Vianello, F. Villone, E. Viezzer, B. Vincent, I. Voitsekhovitch, N.M.T. Vu, N. Walkden, T. Wauters, H. Weisen, N. Wendler, M. Wensing, F. Widmer, S. Wiesen, M. Wischmeier, T.A. Wijkamp, D. Wünderlich, C. Wüthrich, V. Yanovskiy, J. Zebrowski, the EUROfusion MST1 Team, EUROfusion MST1 Team, Control Systems Technology, Liquid metal heat shields, Science and Technology of Nuclear Fusion, Group Heemels, Mechanical Engineering, Data Mining, EAISI Health, ICMS Affiliated, EAISI High Tech Systems, Applied Physics and Science Education, Reimerdes, H, Agostini, M, Alessi, E, Alberti, S, Andrebe, Y, Arnichand, H, Balbin, J, Bagnato, F, Baquero-Ruiz, M, Bernert, M, Bin, W, Blanchard, P, Blanken, T, Boedo, J, Brida, D, Brunner, S, Bogar, C, Bogar, O, Bolzonella, T, Bombarda, F, Bouquey, F, Bowman, C, Brunetti, D, Buermans, J, Bufferand, H, Calacci, L, Camenen, Y, Carli, S, Carnevale, D, Carpanese, F, Causa, F, Cavalier, J, Cavedon, M, Cazabonne, J, Cerovsky, J, Chandra, R, Chandrarajan Jayalekshmi, A, Chellai, O, Chmielewski, P, Choi, D, Ciraolo, G, Classen, I, Coda, S, Colandrea, C, Dal Molin, A, David, P, De Baar, M, Decker, J, Dekeyser, W, De Oliveira, H, Douai, D, Dreval, M, Dunne, M, Duval, B, Elmore, S, Embreus, O, Eriksson, F, Faitsch, M, Falchetto, G, Farnik, M, Fasoli, A, Fedorczak, N, Felici, F, Fevrier, O, Ficker, O, Fil, A, Fontana, M, Fransson, E, Frassinetti, L, Furno, I, Gahle, D, Galassi, D, Galazka, K, Galperti, C, Garavaglia, S, Garcia-Munoz, M, Geiger, B, Giacomin, M, Giruzzi, G, Gobbin, M, Golfinopoulos, T, Goodman, T, Gorno, S, Granucci, G, Graves, J, Griener, M, Gruca, M, Gyergyek, T, Haelterman, R, Hakola, A, Han, W, Happel, T, Harrer, G, Harrison, J, Henderson, S, Hogeweij, G, Hogge, J, Hoppe, M, Horacek, J, Huang, Z, Iantchenko, A, Innocente, P, Insulander Bjork, K, Ionita-Schrittweiser, C, Isliker, H, Jardin, A, Jaspers, R, Karimov, R, Karpushov, A, Kazakov, Y, Komm, M, Kong, M, Kovacic, J, Krutkin, O, Kudlacek, O, Kumar, U, Kwiatkowski, R, Labit, B, Laguardia, L, Lammers, J, Laribi, E, Laszynska, E, Lazaros, A, Linder, O, Linehan, B, Lipschultz, B, Llobet, X, Loizu, J, Lunt, T, Macusova, E, Marandet, Y, Maraschek, M, Marceca, G, Marchetto, C, Marchioni, S, Marmar, E, Martin, Y, Martinelli, L, Matos, F, Maurizio, R, Mayoral, M, Mazon, D, Menkovski, V, Merle, A, Merlo, G, Meyer, H, Mikszuta-Michalik, K, Molina Cabrera, P, Morales, J, Moret, J, Moro, A, Moulton, D, Muhammed, H, Myatra, O, Mykytchuk, D, Napoli, F, Nem, R, Nielsen, A, Nocente, M, Nowak, S, Offeddu, N, Olsen, J, Orsitto, F, Pan, O, Papp, G, Pau, A, Perek, A, Pesamosca, F, Peysson, Y, Pigatto, L, Piron, C, Poradzinski, M, Porte, L, Putterich, T, Rabinski, M, Raj, H, Rasmussen, J, Ratta, G, Ravensbergen, T, Ricci, D, Ricci, P, Rispoli, N, Riva, F, Rivero-Rodriguez, J, Salewski, M, Sauter, O, Schmidt, B, Schrittweiser, R, Sharapov, S, Sheikh, U, Sieglin, B, Silva, M, Smolders, A, Snicker, A, Sozzi, C, Spolaore, M, Stagni, A, Stipani, L, Sun, G, Tala, T, Tamain, P, Tanaka, K, Tema Biwole, A, Terranova, D, Terry, J, Testa, D, Theiler, C, Thornton, A, Thrysoe, A, Torreblanca, H, Tsui, C, Vaccaro, D, Vallar, M, Van Berkel, M, Van Eester, D, Van Kampen, R, Van Mulders, S, Verhaegh, K, Verhaeghe, T, Vianello, N, Villone, F, Viezzer, E, Vincent, B, Voitsekhovitch, I, Vu, N, Walkden, N, Wauters, T, Weisen, H, Wendler, N, Wensing, M, Widmer, F, Wiesen, S, Wischmeier, M, Wijkamp, T, Wunderlich, D, Wuthrich, C, Yanovskiy, V, and Zebrowski, J
- Subjects
Nuclear and High Energy Physics ,Tokamak ,feedback-control ,Nuclear fusion ,TCV ,EUROfusion ,ddc:620 ,plasmas ,Condensed Matter Physics ,tokamak ,nuclear fusion ,QC - Abstract
The tokamak à configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019–20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T e/T i ∼ 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with ‘small’ (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019–20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
- Published
- 2022
- Full Text
- View/download PDF
42. Gamma-ray measurements in D fusion plasma experiments on JET
- Author
-
M. Iliasova, A. Shevelev, E. Khilkevich, Ye. Kazakov, V. Kiptily, M. Nocente, L. Giacomelli, T. Craciunescu, Z. Stancar, A. Dal Molin, D. Rigamonti, M. Tardocchi, D. Doinikov, G. Gorini, V. Naidenov, I. Polunovsky, D. Gin, Iliasova, M, Shevelev, A, Khilkevich, E, Kazakov, Y, Kiptily, V, Nocente, M, Giacomelli, L, Craciunescu, T, Stancar, Z, Dal Molin, A, Rigamonti, D, Tardocchi, M, Doinikov, D, Gorini, G, Naidenov, V, Polunovsky, I, and Gin, D
- Subjects
Tokamak plasma ,Fusion reaction ,Fusion rate ,Gamma-ray spectrometry ,Alpha-particle - Abstract
Using capabilities of the gamma-ray spectrometry, fusion born alpha-particles were studied in recent D-3He plasma experiments on JET. A substantial population of the alpha-particles was generated in the He-3-rich plasma due to the He-3(D, p)He-4 reaction. Fast deuterium ions of the neutral beam injection (NBI) heating were accelerated to MeV energies with three-ion scenario D-(DNBI)-He-3 using radio frequency waves in the ion cyclotron range of frequencies (ICRF). A high reaction rate allowed to measure the alpha-particle production rate and their spatial distribution in the plasma by detecting 16.7-MeV gamma-rays from the He-3(D, y)Li-5 reaction, which is a weak branch of He-3(D, p)He-4 reaction. A branching ratio of gamma-ray transitions to the ground and the first excited states of Li-5 was obtained. Due to the beryllium is a main impurity of JET plasmas, intensive gamma-rays from the Be-9(D, ny)10B, Be-9(D, py)Be-10 and Be-9(a, ny)C-12 reactions were observed. Exploitation of the reaction cross-sections and the Doppler shape analysis (DSA) of gamma-lines in the recorded spectra provided the possibility to reconstruct distribution functions of the confined D-ions and the fusion-born alpha-particles.
- Published
- 2022
43. Role of neutron attenuators for gamma-ray measurements in deuterium-tritium magnetic confinement plasmas
- Author
-
D, Rigamonti, A, Dal Molin, G, Gorini, G, Marcer, M, Nocente, M, Rebai, T, Craciunescu, Z, Ghani, V, Kiptily, M, Maslov, A, Shevelev, A, Zohar, M, Tardocchi, Rigamonti, D, Dal Molin, A, Gorini, G, Marcer, G, Nocente, M, Rebai, M, Craciunescu, T, Ghani, Z, Kiptily, V, Maslov, M, Shevelev, A, Zohar, A, and Tardocchi, M
- Subjects
Neutron attenuators, gamma-ray measurements ,Instrumentation - Abstract
The Joint European Torus (JET) is the only tokamak in the world able to operate in Deuterium–Tritium (DT) plasmas. A successful DT experimental campaign, the DTE2, has recently been carried out, providing unique opportunities for studying both physics and technological aspects. In particular, it allowed us to investigate and benchmark the solutions adopted to attenuate the significant 14 MeV neutron flux, needed to enable high-resolution gamma-ray spectroscopy measurements on a tokamak. While in inertial confinement experiments, gamma-rays and neutrons are discriminated through time-of-flight techniques; in magnetic confinement experiments, the neutron attenuators are a key element to allow gamma-ray measurements in order to reestablish the 1 × 105 to 1 background to signal ratio. In this paper, the role of the reference neutron attenuators at JET, based on LiH, has been analyzed and described.
- Published
- 2022
44. Validation of realistic Monte Carlo plasma gamma-ray source on JET discharges
- Author
-
A. Žohar, M. Nocente, B. Kos, Ž. Štancar, M. Rebai, D. Rigamonti, T. Craciunescu, M. Gorelenkova, Ye.O. Kazakov, V.G. Kiptily, L. Snoj, M. Tardocchi, I. Lengar, null JET Contributors, ohar, A, Nocente, M, Kos, B, tancar, ?, Rebai, M, Rigamonti, D, Craciunescu, T, Gorelenkova, M, Kazakov, Y, Kiptily, V, Snoj, L, Tardocchi, M, Lengar, I, and Contributors, J
- Subjects
Nuclear and High Energy Physics ,TRANSP ,plasma gamma-rays ,Physics::Plasma Physics ,JET ,Astrophysics::High Energy Astrophysical Phenomena ,MCNP ,plasma gamma-ray ,Condensed Matter Physics ,tokamak - Abstract
A novel modelling methodology has been developed for the creation of a realistic plasma gamma-ray source for Monte Carlo transport simulations in the tokamak JET. The methodology couples the TRANSP code for plasma transport calculations with the MCNP Monte Carlo particle transport code, thus connecting plasma physics with gamma-ray transport. This paper presents the validation of the developed source methodology by comparing calculated gamma-ray spectra with measurements performed at JET. The validation focuses on gamma-ray spectra measured by the tangential gamma-ray spectrometer during two JET three ion RF scenario discharges, performed in the JET 2019 deuterium experimental campaign. For validation the calculated plasma gamma-ray spectrum was combined with the neutron induced prompt gamma-ray background, originating in the vacuum vessel, and scaled to absolute values calculating the total number of plasma gamma-ray and neutron emitting reactions. The comparison between calculated and measured gamma-ray spectra shows good agreement with the shape of the calculated gamma-ray spectra matching that of measurements for both studied discharges. Moreover, the calculated absolute values of the gamma-ray spectra were of the same order of magnitude at the position of the gamma-ray detector located at the end of a long line-of-sight in a biological shield. The comparison has validated the developed plasma gamma-ray source methodology for MCNP photon transport calculations at JET. The validation provides a basis for the developed plasma gamma-ray source to be used as a support for the development of future tokamaks such as DEMO.
- Published
- 2022
- Full Text
- View/download PDF
45. Plasma physics and control studies planned in JT-60SA for ITER and DEMO operations and risk mitigation
- Author
-
M Yoshida, G Giruzzi, N Aiba, J F Artaud, J Ayllon-Guerola, L Balbinot, O Beeke, E Belonohy, P Bettini, W Bin, A Bierwage, T Bolzonella, M Bonotto, C Boulbe, J Buermans, M Chernyshova, S Coda, R Coelho, S Davis, C Day, G De Tommasi, M Dibon, A Ejiri, G Falchetto, A Fassina, B Faugeras, L Figini, M Fukumoto, S Futatani, K Galazka, J Garcia, M Garcia-Muñoz, L Garzotti, L Giacomelli, L Giudicotti, S Hall, N Hayashi, C Hoa, M Honda, K Hoshino, M Iafrati, A Iantchenko, S Ide, S Iio, R Imazawa, S Inoue, A Isayama, E Joffrin, K Kamiya, Y Ko, M Kobayashi, T Kobayashi, G Kocsis, A Kovacsik, T Kurki-Suonio, B Lacroix, P Lang, Ph Lauber, A Louzguiti, E de la Luna, G Marchiori, M Mattei, A Matsuyama, S Mazzi, A Mele, F Michel, Y Miyata, J Morales, P Moreau, A Moro, T Nakano, M Nakata, E Narita, R Neu, S Nicollet, M Nocente, S Nowak, F P Orsitto, V Ostuni, Y Ohtani, N Oyama, R Pasqualotto, B Pégourié, E Perelli, L Pigatto, C Piccinni, A Pironti, P Platania, B Ploeckl, D Ricci, P Roussel, G Rubino, R Sano, K Särkimäki, K Shinohara, S Soare, C Sozzi, S Sumida, T Suzuki, Y Suzuki, T Szabolics, T Szepesi, Y Takase, M Takech, N Tamura, K Tanaka, H Tanaka, M Tardocchi, A Terakado, H Tojo, T Tokuzawa, A Torre, N Tsujii, H Tsutsui, Y Ueda, H Urano, M Valisa, M Vallar, J Vega, F Villone, T Wakatsuki, T Wauters, M Wischmeier, S Yamoto, L Zani, Yoshida, M, Giruzzi, G, Aiba, N, Artaud, J F, Ayllon-Guerola, J, Balbinot, L, Beeke, O, Belonohy, E, Bettini, P, Bin, W, Bierwage, A, Bolzonella, T, Bonotto, M, Boulbe, C, Buermans, J, Chernyshova, M, Coda, S, Coelho, R, Davis, S, Day, C, De Tommasi, G, Dibon, M, Ejiri, A, Falchetto, G, Fassina, A, Faugeras, B, Figini, L, Fukumoto, M, Futatani, S, Galazka, K, Garcia, J, Garcia-Muñoz, M, Garzotti, L, Giacomelli, L, Giudicotti, L, Hall, S, Hayashi, N, Hoa, C, Honda, M, Hoshino, K, Iafrati, M, Iantchenko, A, Ide, S, Iio, S, Imazawa, R, Inoue, S, Isayama, A, Joffrin, E, Kamiya, K, Ko, Y, Kobayashi, M, Kobayashi, T, Kocsis, G, Kovacsik, A, Kurki-Suonio, T, Lacroix, B, Lang, P, Lauber, Ph, Louzguiti, A, de la Luna, E, Marchiori, G, Mattei, M, Matsuyama, A, Mazzi, S, Mele, A, Michel, F, Miyata, Y, Morales, J, Moreau, P, Moro, A, Nakano, T, Nakata, M, Narita, E, Neu, R, Nicollet, S, Nocente, M, Nowak, S, Orsitto, F P, Ostuni, V, Ohtani, Y, Oyama, N, Pasqualotto, R, Pégourié, B, Perelli, E, Pigatto, L, Piccinni, C, Pironti, A, Platania, P, Ploeckl, B, Ricci, D, Roussel, P, Rubino, G, Sano, R, Särkimäki, K, Shinohara, K, Soare, S, Sozzi, C, Sumida, S, Suzuki, T, Suzuki, Y, Szabolics, T, Szepesi, T, Takase, Y, Takech, M, Tamura, N, Tanaka, K, Tanaka, H, Tardocchi, M, Terakado, A, Tojo, H, Tokuzawa, T, Torre, A, Tsujii, N, Tsutsui, H, Ueda, Y, Urano, H, Valisa, M, Vallar, M, Vega, J, Villone, F, Wakatsuki, T, Wauters, T, Wischmeier, M, Yamoto, S, Zani, L, Artaud, J, Garcia-Munoz, M, Lauber, P, Orsitto, F, Pegourie, B, Sarkimaki, K, Control, Analysis and Simulations for TOkamak Research (CASTOR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, National Institutes for Quantum and Radiological Science and Technology, CEA, University of Seville, National Research Council of Italy, University of Oxford, JET, CNR-ENEA-EURATOM Association, Université Côte d'Azur, Royal Military Academy, Soltan Institute for Nuclear Studies, Swiss Federal Institute of Technology Lausanne, Universidade Lisboa, Fusion for Energy, Karlsruhe Institute of Technology, University of Naples Federico II, Max-Planck-Institut für Plasmaphysik, The University of Tokyo, BarcelonaTech, Kyoto University, Keio University, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Tokyo Institute of Technology, Nagoya University, Centre for Energy Research, Budapest University of Technology and Economics, Department of Applied Physics, CIEMAT, Physique des Interactions Ioniques et Moleculaires, National Institute for Fusion Science, University of Milan - Bicocca, Tuscia University, Institute of Cryogenics and Isotopic Technologies - ICIT, National Institutes for Quantum Science and Technology, Aalto-yliopisto, and Aalto University
- Subjects
Scenario development ,Superconductivity ,Física [Àrees temàtiques de la UPC] ,Physics ,Risk mitigation ,risk mitigation ,JT-60SA ,Condensed Matter Physics ,Plasma control ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,plasma control ,scenario development ,Nuclear Energy and Engineering ,ddc:530 ,Superconductivitat - Abstract
Alarge superconducting machine, JT-60SA has been constructed to provide major contributions to the ITER program and DEMO design. For the success of the ITER project and fusion reactor, understanding and development of plasma controllability in ITER and DEMO relevant higher beta regimes are essential. JT-60SA has focused the program on the plasma controllability for scenario development and risk mitigation in ITER as well as on investigating DEMO relevant regimes. This paper summarizes the high research priorities and strategy for the JT-60SA project. Recent works on simulation studies to prepare the plasma physics and control experiments are presented, such as plasma breakdown and equilibrium controls, hybrid and steady-state scenario development, and risk mitigation techniques. Contributions of JT-60SA to ITER and DEMOhave been clarified through those studies. Peer Reviewed Article escrit per 127 autors/autores: M Yoshida, G Giruzzi, N Aiba, J F Artaud, J Ayllon-Guerola, L Balbinot, OBeeke, E Belonohy, P Bettini, W Bin, A Bierwage, T Bolzonella, M Bonotto, CBoulbe, J Buermans, M Chernyshova, S Coda, R Coelho, S Davis, C Day, GDeTommasi, M Dibon, A Ejiri, G Falchetto, A Fassina, B Faugeras, L Figini, M Fukumoto, S Futatani, K Galazka, J Garcia, M Garcia-Muñoz, L Garzotti, L Giacomelli, L Giudicotti, S Hall, N Hayashi, C Hoa, M Honda, K Hoshino, M Iafrati, A Iantchenko, S Ide, S Iio, R Imazawa, S Inoue, A Isayama, E Joffrin, K Kamiya, Y Ko, M Kobayashi, T Kobayashi, G Kocsis, A Kovacsik, T Kurki-Suonio, B Lacroix, P Lang, Ph Lauber, A Louzguiti, E de la Luna, G Marchiori, M Mattei, A Matsuyama, S Mazzi, A Mele, F Michel, Y Miyata, J Morales, P Moreau, A Moro, T Nakano, M Nakata, E Narita, R Neu, S Nicollet, M Nocente, S Nowak, F P Orsitto, V Ostuni, Y Ohtani, N Oyama, R Pasqualotto, B Pégourié, E Perelli, L Pigatto, C Piccinni, A Pironti, P Platania, B Ploeckl, D Ricci, P Roussel, G Rubino, R Sano, K Särkimäki, K Shinohara, S Soare, C Sozzi, S Sumida, T Suzuki, Y Suzuki, T Szabolics, T Szepesi, Y Takase, M Takech, N Tamura, K Tanaka, H Tanaka, M Tardocchi, A Terakado, H Tojo, T Tokuzawa, A Torre, N Tsujii, H Tsutsui, Y Ueda, H Urano, M Valisa, M Vallar, J Vega, F Villone, T Wakatsuki, T Wauters, M Wischmeier, S Yamoto, L Zani
- Published
- 2022
- Full Text
- View/download PDF
46. A high-resolution neutron spectroscopic camera for the SPARC tokamak based on the Jet European Torus deuterium–tritium experience
- Author
-
M, Tardocchi, M, Rebai, D, Rigamonti, R A, Tinguely, F, Caruggi, G, Croci, A, Dal Molin, Z, Ghani, L, Giacomelli, M, Girolami, G, Grosso, M, Kushoro, G, Marcer, M, Mastellone, A, Muraro, M, Nocente, E, Perelli Cippo, M, Petruzzo, O, Putignano, J, Scionti, V, Serpente, D M, Trucchi, S, Mackie, A A, Saltos, E, De Marchi, M, Parisi, A, Trotta, E, de la Luna, J, Garcia, Y, Kazakov, M, Maslov, Z, Stancar, G, Gorini, Tardocchi, M, Rebai, M, Rigamonti, D, Tinguely, R, Caruggi, F, Croci, G, Dal Molin, A, Ghani, Z, Giacomelli, L, Girolami, M, Grosso, G, Kushoro, M, Marcer, G, Mastellone, M, Muraro, A, Nocente, M, Perelli Cippo, E, Petruzzo, M, Putignano, O, Scionti, J, Serpente, V, Trucchi, D, Mackie, S, Saltos, A, De Marchi, E, Parisi, M, Trotta, A, de la Luna, E, Garcia, J, Kazakov, Y, Maslov, M, Stancar, Z, and Gorini, G
- Subjects
Neutron spectroscopy, neutron camera ,Instrumentation - Abstract
Dedicated nuclear diagnostics have been designed, developed, and built within EUROFUSION enhancement programs in the last ten years for installation at the Joint European Torus and capable of operation in high power Deuterium–Tritium (DT) plasmas. The recent DT Experiment campaign, called DTE2, has been successfully carried out in the second half of 2021 and provides a unique opportunity to evaluate the performance of the new nuclear diagnostics and for an understanding of their behavior in the record high 14 MeV neutron yields (up to 4.7 × 1018 n/s) and total number of neutrons (up to 2 × 1019 n) achieved on a tokamak. In this work, we will focus on the 14 MeV high resolution neutron spectrometers based on artificial diamonds which, for the first time, have extensively been used to measure 14 MeV DT neutron spectra with unprecedented energy resolution (Full Width at Half Maximum of ≈1% at 14 MeV). The work will describe their long-term stability and operation over the DTE2 campaign as well as their performance as neutron spectrometers in terms of achieved energy resolution and high rate capability. This important experience will be used to outline the concept of a spectroscopic neutron camera for the SPARC tokamak. The proposed neutron camera will be the first one to feature the dual capability to measure (i) the 2.5 and 14 MeV neutron emissivity profile via the conventional neutron detectors based on liquid or plastics scintillators and (ii) the 14 MeV neutron spectral emission via the use of high-resolution diamond-based spectrometers. The new opportunities opened by the spectroscopic neutron camera to measure plasma parameters will be discussed.
- Published
- 2022
- Full Text
- View/download PDF
47. The CNESM neutron imaging diagnostic for SPIDER beam source
- Author
-
L. Giacomelli, M. Fincato, V. Cervaro, M. Tardocchi, Gabriele Croci, Giovanni Grosso, F. Murtas, L. Franchin, S. Feng, A. Muraro, Giuseppe Gorini, Marco Cavenago, M. Dalla Palma, M. Tollin, Marica Rebai, E. Perelli Cippo, M. Nocente, Roberto Pasqualotto, Croci, G, Muraro, A, Perelli Cippo, E, Grosso, G, Pasqualotto, R, Cavenago, M, Cervaro, V, Dalla Palma, M, Feng, S, Fincato, M, Franchin, L, Giacomelli, L, Murtas, F, Nocente, M, Rebai, M, Tardocchi, M, Tollin, M, and Gorini, G
- Subjects
Neutral Beam Injector ,Vacuum ,Neutron emission ,Ultra-high vacuum ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,Beam dump ,GEM detectors Vacuum ,010306 general physics ,Deuterium map ,Civil and Structural Engineering ,Physics ,business.industry ,Mechanical Engineering ,Neutron imaging ,Detector ,Injector ,Neutron temperature ,Nuclear Energy and Engineering ,Physics::Accelerator Physics ,GEM detector ,business ,Beam (structure) - Abstract
The PRIMA project aims at the construction of two ITER-NBI facilities in Padova (Italy). The first one is called SPIDER which is negative H/D 100 keV RF source, while the second one (MITICA) will be a full scale 1 MeV deuterium beam injector as the one that will be used in ITER. In order to resolve the horizontal beam intensity profile in MITICA and one of the eight beamlets groups in SPIDER, the Close-contact Neutron Emission Surface Mapping (CNESM) system is being developed. The goal of this device is to reconstruct the D− beam evaluating the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. For this reason, the CNESM diagnostic, which is based on nGEM detectors for fast neutrons, will be placed right behind the SPIDER and MITICA beam dump, i.e. in an UHV (Ultra High Vacuum) environment. Since the nGEM detectors need to operate at atmospheric pressure a vacuum sealed detector box has been designed to be installed inside the vacuum vessel and able to sustain atmospheric pressure inside. This paper describes the status of the CNESM diagnostic and underlines the different phases followed during the realization and installation of the diagnostic on the SPIDER beam dump as well as its imaging performances.
- Published
- 2019
- Full Text
- View/download PDF
48. Prediction of ICRF minority heating schemes for JET D–T experiments
- Author
-
D Gallart, M J Mantsinen, J Manyer, E Planas, D M A Taylor, J Garcia, D Frigione, L Garzotti, Hyun-Tae Kim, M Nocente, F Rimini, D Van Eester, Gallart, D, Mantsinen, M, Manyer, J, Planas, E, Taylor, D, Garcia, J, Frigione, D, Garzotti, L, Kim, H, Nocente, M, Rimini, F, and Van Eester, D
- Subjects
Nuclear Energy and Engineering ,JET ,D-T prediction ,plasma heating ,Condensed Matter Physics ,ICRH - Abstract
Achieving high-performance conditions and maximizing the fusion yield of plasma discharges have been one of the main goals of recent Joint European Torus (JET) campaigns in preparation for its second deuterium–tritium (D–T) campaign. The simulations shown in this work delve into the role of external heating using neutral beam injection (NBI) and radio-frequency waves in the ion cyclotron range of frequencies (ICRF) in order to optimise high fusion performance in the JET tokamak. A baseline discharge with record neutron rate is used as a reference in order to perform a D–T prediction, which considers the NBI+RF synergy. In this work, our focus is on JET’s two main minority schemes, H and 3He. This study tackles the heating mechanisms by which these schemes reach high-performance conditions. The H scheme typically boosts the ICRF fusion enhancement through the second D harmonic heating, whereas 3He minority is characterised by its strong bulk ion heating. Both features are beneficial for increasing the fusion yield. Nevertheless, the minority concentration is a relevant parameter, which needs to be assessed to understand in which concentration ranges the benefits of each particular minority scheme are met. Therefore, the main objective of this work is to assess in which concentration range the ICRF fusion enhancement and bulk ion heating are optimal, for H and 3He, respectively. Under these conditions, our prediction suggests 3He concentration should stay above 1.2% and H should remain below 2.2%.
- Published
- 2022
- Full Text
- View/download PDF
49. Simultaneous measurements of unstable and stable Alfvén eigenmodes in JET
- Author
-
R.A. Tinguely, J. Gonzalez-Martin, P.G. Puglia, N. Fil, S. Dowson, M. Porkolab, I. Kumar, M. Podestà, M. Baruzzo, A. Fasoli, Ye.O. Kazakov, M.F.F. Nave, M. Nocente, J. Ongena, Ž. Štancar, JET Contributors, Tinguely, R, Gonzalez-Martin, J, Puglia, P, Fil, N, Dowson, S, Porkolab, M, Kumar, I, Podesta, M, Baruzzo, M, Fasoli, A, Kazakov, Y, Nave, M, Nocente, M, Ongena, J, and Stancar, Z
- Subjects
Plasma Physics (physics.plasm-ph) ,Nuclear and High Energy Physics ,neutral beam injection ,Alfvén eigenmode ,FOS: Physical sciences ,three-ion-heating ,ion cyclotron resonance heating ,alfven eigenmodes ,stability ,Condensed Matter Physics - Abstract
In this paper, we report the novel experimental observation of both unstable and stable toroidicity-induced Alfvén eigenmodes (TAEs) measured simultaneously in a JET tokamak plasma. The three-ion-heating scheme (D-DNBI-3He) is employed to accelerate deuterons to MeV energies, thereby destabilizing TAEs with toroidal mode numbers n = 3–5, each decreasing in mode amplitude. At the same time, the Alfvén eigenmode active diagnostic resonantly excites a stable n = 6 TAE with total normalized damping rate −γ/ω 0 ≈ 1%–4%. Hybrid kinetic-MHD modeling with codes NOVA-K and MEGA both find eigenmodes with similar frequencies, mode structures, and radial locations as in experiment. NOVA-K demonstrates good agreement with the n = 3, 4, and 6 TAEs, matching the damping rate of the n = 6 mode within uncertainties and identifying radiative damping as the dominant contribution. Improved agreement is found with MEGA for all modes: the unstable n = 3–5 and stable n = 2, 6 modes, with the latter two stabilized by higher intrinsic damping and lower fast ion drive, respectively. While some discrepancies remain to be resolved, this unique validation effort gives us confidence in TAE stability predictions for future fusion devices.
- Published
- 2022
- Full Text
- View/download PDF
50. Fast-ion orbit sensitivity of neutron and gamma-ray diagnostics for one-step fusion reactions
- Author
-
H. Järleblad, L. Stagner, M. Salewski, J. Eriksson, M. Nocente, J. Rasmussen, Ž. Štancar, Ye.O. Kazakov, B. Simmendefeldt, null JET Contributors, Jarleblad, H, Stagner, L, Salewski, M, Eriksson, J, Nocente, M, Rasmussen, J, Stancar, Z, Kazakov, Y, and Simmendefeldt, B
- Subjects
energetic particle physic ,Nuclear and High Energy Physics ,energetic particle diagnostic ,neutron emission ,Astrophysics::High Energy Astrophysical Phenomena ,plasma diagnostic ,tomography ,gamma-ray emission ,Condensed Matter Physics ,one-step fusion reaction - Abstract
Fast ions in the MeV-range can be diagnosed by neutron emission spectroscopy (NES) and gamma-ray spectroscopy (GRS). In this work, we present orbit weight functions for one-step fusion reactions, using NES and GRS diagnostics on perpendicular and oblique lines-of-sight (LOS) at Joint European Torus (JET) as examples. The orbit weight functions allow us to express the sensitivities of the diagnostics in terms of fast-ion (FI) orbits and can be used to swiftly reproduce synthetic signals that have been computed by established codes. For diagnostically relevant neutron energies for the D(D, n)3He reaction, the orbit sensitivities of the NES diagnostics follow a predictable pattern. As the neutron energy of interest increases, the pattern shifts upwards in FI energy. For the GRS diagnostic and the T(p,γ)4He reaction, the orbit sensitivity is shown to be qualitatively different for red-shifted, blue-shifted and nominal gamma birth energies. Finally, we demonstrate how orbit weight functions can be used to decompose diagnostic signals into the contributions from different orbit types. For a TRANSP simulation of the JET discharge (a three-ion ICRF scenario) considered in this work, the NES signals for both the perpendicular and oblique LOS are shown to originate mostly from co-passing orbits. In addition, a significant fraction of the NES signal for the oblique LOS is shown to originate from stagnation orbits.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.