8 results on '"Müller-Navarra DC"'
Search Results
2. Global data set of long-term summertime vertical temperature profiles in 153 lakes.
- Author
-
Pilla RM, Mette EM, Williamson CE, Adamovich BV, Adrian R, Anneville O, Balseiro E, Ban S, Chandra S, Colom-Montero W, Devlin SP, Dix MA, Dokulil MT, Feldsine NA, Feuchtmayr H, Fogarty NK, Gaiser EE, Girdner SF, González MJ, Hambright KD, Hamilton DP, Havens K, Hessen DO, Hetzenauer H, Higgins SN, Huttula TH, Huuskonen H, Isles PDF, Joehnk KD, Keller WB, Klug J, Knoll LB, Korhonen J, Korovchinsky NM, Köster O, Kraemer BM, Leavitt PR, Leoni B, Lepori F, Lepskaya EV, Lottig NR, Luger MS, Maberly SC, MacIntyre S, McBride C, McIntyre P, Melles SJ, Modenutti B, Müller-Navarra DC, Pacholski L, Paterson AM, Pierson DC, Pislegina HV, Plisnier PD, Richardson DC, Rimmer A, Rogora M, Rogozin DY, Rusak JA, Rusanovskaya OO, Sadro S, Salmaso N, Saros JE, Sarvala J, Saulnier-Talbot É, Schindler DE, Shimaraeva SV, Silow EA, Sitoki LM, Sommaruga R, Straile D, Strock KE, Swain H, Tallant JM, Thiery W, Timofeyev MA, Tolomeev AP, Tominaga K, Vanni MJ, Verburg P, Vinebrooke RD, Wanzenböck J, Weathers K, Weyhenmeyer GA, Zadereev ES, and Zhukova TV
- Abstract
Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
3. Widespread deoxygenation of temperate lakes.
- Author
-
Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI, Arvola L, Chandra S, DeGasperi CL, Diemer L, Dunalska J, Erina O, Flaim G, Grossart HP, Hambright KD, Hein C, Hejzlar J, Janus LL, Jenny JP, Jones JR, Knoll LB, Leoni B, Mackay E, Matsuzaki SS, McBride C, Müller-Navarra DC, Paterson AM, Pierson D, Rogora M, Rusak JA, Sadro S, Saulnier-Talbot E, Schmid M, Sommaruga R, Thiery W, Verburg P, Weathers KC, Weyhenmeyer GA, Yokota K, and Rose KC
- Subjects
- Animals, Climate Change, Ecosystem, Oceans and Seas, Oxygen chemistry, Phytoplankton metabolism, Solubility, Time Factors, Lakes chemistry, Oxygen analysis, Oxygen metabolism, Temperature
- Abstract
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity
1,2 , nutrient biogeochemistry3 , greenhouse gas emissions4 , and the quality of drinking water5 . The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7 , but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10 . Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11 .- Published
- 2021
- Full Text
- View/download PDF
4. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes.
- Author
-
Pilla RM, Williamson CE, Adamovich BV, Adrian R, Anneville O, Chandra S, Colom-Montero W, Devlin SP, Dix MA, Dokulil MT, Gaiser EE, Girdner SF, Hambright KD, Hamilton DP, Havens K, Hessen DO, Higgins SN, Huttula TH, Huuskonen H, Isles PDF, Joehnk KD, Jones ID, Keller WB, Knoll LB, Korhonen J, Kraemer BM, Leavitt PR, Lepori F, Luger MS, Maberly SC, Melack JM, Melles SJ, Müller-Navarra DC, Pierson DC, Pislegina HV, Plisnier PD, Richardson DC, Rimmer A, Rogora M, Rusak JA, Sadro S, Salmaso N, Saros JE, Saulnier-Talbot É, Schindler DE, Schmid M, Shimaraeva SV, Silow EA, Sitoki LM, Sommaruga R, Straile D, Strock KE, Thiery W, Timofeyev MA, Verburg P, Vinebrooke RD, Weyhenmeyer GA, and Zadereev E
- Abstract
Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade
-1 , comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1 ). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1 ), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1 . The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.- Published
- 2020
- Full Text
- View/download PDF
5. A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers.
- Author
-
Galloway AW, Brett MT, Holtgrieve GW, Ward EJ, Ballantyne AP, Burns CW, Kainz MJ, Müller-Navarra DC, Persson J, Ravet JL, Strandberg U, Taipale SJ, and Alhgren G
- Subjects
- Animals, Bayes Theorem, Diet, Fatty Acids chemistry, Food Chain
- Abstract
We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.
- Published
- 2015
- Full Text
- View/download PDF
6. Bioactive compounds offered in microcapsules to determine the nutritional value of copepods' natural diet.
- Author
-
Müller-Navarra DC and Huntley ME
- Subjects
- Animal Feed, Animals, California, Diet methods, Fatty Acids metabolism, Fatty Acids, Omega-3 metabolism, Lipids, Biological Factors metabolism, Capsules metabolism, Copepoda growth & development, Copepoda metabolism, Nutritive Value physiology
- Abstract
Experiments were performed, feeding Calanus pacificus seston and a food consisting of seston and microcapsules (μ-caps), i.e., protein and lipid μ-caps to test for potential biochemical limitation. Seston was collected off Scripps Pier (La Jolla, CA, USA). Whereas protein μ-caps were too small to be efficiently ingested, lipid μ-caps rich in ω3-highly-unsaturated fatty acids (ω3-HUFA) were ingested similarly to natural seston and lipids were assimilated. However, egg production experiments exhibited that animals fed with lipid μ-caps didn't produce significantly more eggs than with seston of equal carbon concentration and egg production even declined when the diet consisted of 50% lipid μ-caps. Thus, the content of certain ω3-HUFA seemed to have been sufficiently high in seston to prevent limitation. Algal counts revealed that seston consisted mainly of plankton rich in those fatty acids, such as cryptophytes, dinoflagellates, diatoms, and ciliates in the edible size range. This might be characteristic for upwelling systems like the area off Southern California which are known for high trophic transfer efficiency.
- Published
- 2013
- Full Text
- View/download PDF
7. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes.
- Author
-
Müller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zorita E, and Goldman CR
- Subjects
- Animals, Biomass, Carbon metabolism, Chlorophyll metabolism, Chlorophyll A, Daphnia growth & development, Daphnia physiology, Food, Ovum physiology, Particle Size, Phosphorus metabolism, Phytoplankton metabolism, Seasons, Fatty Acids, Unsaturated analysis, Food Chain, Fresh Water chemistry, Zooplankton metabolism
- Abstract
Determining the factors that control food web interactions is a key issue in ecology. The empirical relationship between nutrient loading (total phosphorus) and phytoplankton standing stock (chlorophyll a) in lakes was described about 30 years ago and is central for managing surface water quality. The efficiency with which biomass and energy are transferred through the food web and sustain the production of higher trophic levels (such as fish) declines with nutrient loading and system productivity, but the underlying mechanisms are poorly understood. Here we show that in seston (fine particles in water) during summer, specific omega3-polyunsaturated fatty acids (omega3-PUFAs), which are important for zooplankton, are significantly correlated to the trophic status of the lake. The omega3-PUFAs octadecatetraenoic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid, but not alpha-linolenic acid, decrease on a double-logarithmic scale with increasing total phosphorus. By combining the empirical relationship between EPA-to-carbon content and total phosphorus with functional models relating EPA-to-carbon content to the growth and egg production of daphnids, we predict secondary production for this key consumer. Thus, the decreasing efficiency in energy transfer with increasing lake productivity can be explained by differences in omega3-PUFA-associated food quality at the plant-animal interface.
- Published
- 2004
- Full Text
- View/download PDF
8. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers.
- Author
-
Müller-Navarra DC, Brett MT, Liston AM, and Goldman CR
- Subjects
- Animals, Carbon chemistry, Cyanobacteria metabolism, Daphnia growth & development, Daphnia metabolism, Ecosystem, Energy Transfer, Fatty Acids, Unsaturated chemistry, Food Chain, Zooplankton growth & development, Carbon metabolism, Fatty Acids, Unsaturated metabolism, Zooplankton metabolism
- Abstract
The factors that regulate energy transfer between primary producers and consumers in aquatic ecosystems have been investigated for more than 50 years. Among all levels of the food web (plants, herbivores, carnivores), the plant-animal interface is the most variable and least predictable link. In hypereutrophic lakes, for example, biomass and energy transfer is often inhibited at the phytoplankton-zooplankton link, resulting in an accumulation of phytoplankton biomass instead of sustaining production at higher trophic levels, such as fish. Accumulation of phytoplankton (especially cyanobacteria) results in severe deterioration of water quality, with detrimental effects on the health of humans and domestic animals, and diminished recreational value of water bodies. We show here that low transfer efficiencies between primary producers and consumers during cyanobacteria bloom conditions are related to low relative eicosapentaenoic acid (20:5omega3) content of the primary producer community. Zooplankton growth and egg production were strongly related to the primary producer 20:5omega3 to carbon ratio. This indicates that limitation of zooplankton production by this essential fatty acid is of central importance at the pelagic producer-consumer interface.
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.