244 results on '"Mélanie, Auffan"'
Search Results
2. Robustness of Indoor Aquatic Mesocosm Experimentations and Data Reusability to Assess the Environmental Risks of Nanomaterials
- Author
-
Mohammad Nassar, Mélanie Auffan, Catherine Santaella, Armand Masion, and Jérôme Rose
- Subjects
nanosafety ,mesocosms ,nanoparticles ,environment ,ecotoxicity ,statistics ,Environmental sciences ,GE1-350 - Abstract
Indoor aquatic mesocosms are increasingly used in nanosafety to assess the behavior, fate, and impacts of engineered nanomaterials (ENMs) in aquatic environments using relevant exposure scenarios. The robustness of 60 L freshwater mesocosm experimentation was tested on the basis of the reusability of the data collected in a database named MESOCOSM regarding mesocosm experiments examining the environmental risks of CeO2 ENMs. We observed high reliability of the measured variables across replicates. The sensitivity of this mesocosm methodology was evidenced by the contrasted ecosystem responses revealed by a multivariate analysis. We also observed that adding variables to the data set up to 15% did not affect the outcome of the analysis of the results. This ability to buffer this variability demonstrates that the indoor aquatic mesocosms are robust tools contributing to the environmental risk assessment of ENMs, and stresses the benefit of reusing the data stored in databases such as MESOCOSM adhering to the findable, accessible, interoperable, reusable (FAIR) data principles.
- Published
- 2021
- Full Text
- View/download PDF
3. How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles?
- Author
-
Morgane Desmau, Andrea Carboni, Maureen Le Bars, Emmanuel Doelsch, Marc F. Benedetti, Mélanie Auffan, Clément Levard, and Alexandre Gelabert
- Subjects
biofilm ,engineered nanoparticles ,mesocosm ,microenvironment ,ZnS ,passivation ,Environmental sciences ,GE1-350 - Abstract
Predicting the fate of engineered nanoparticles (ENPs) once they are released in the environment is essential to evaluate their impacts to ecosystems. Microbial biofilms, as highly reactive compartments in soils and sediments, have the potential to impose strong controls on ENPs life cycle in natural settings. However, information regarding impacts of biofilms toward ENPs environmental fate are not easily accessible, and such evidences are collected and discussed in this review, in order to identify common trends and to better constrain the role played by these microbial structures. Biofilms are reported to exhibit important ENPs accumulation capacities, and short to long-term ENPs immobilization can thus be expected. Mechanisms that govern such accumulation and ENPs migration within biofilms depend strongly on electrostatic and hydrophobic interactions, as well as biofilm structural properties, such as density and permeability. They are a combination of key parameters that include ENPs size and surface properties, mineral substrate reactivity, ability to develop organic corona around ENPs, or formation of aggregates within the biofilm thickness. In addition, these microbial structures exhibit highly reactive microenvironments, and are consequently able to impose major ENPs transformations such as dissolution, through ligand- or redox-mediated pathways, as well as passivation or stabilization processes. Interestingly, exposure to toxic ENPs can even trigger a response from micro-organisms biofilms which has the potential to strongly modify ENPs speciation. Promising approaches to investigate the role of microbial biofilms for ENPs cycling in realistic systems are introduced through the use of mesocosms, medium-size replicated ecosystems that allow to integrate the complexity of natural settings. Finally, biofilm-mediated nanoparticles synthesis in man-impacted systems is presented. This raises important questions regarding biofilms role as secondary sources of nanoparticles.
- Published
- 2020
- Full Text
- View/download PDF
4. Anthropogenic Release and Distribution of Titanium Dioxide Particles in a River Downstream of a Nanomaterial Manufacturer Industrial Site
- Author
-
Danielle L. Slomberg, Mélanie Auffan, Nelly Guéniche, Bernard Angeletti, Andrea Campos, Daniel Borschneck, Olivier Aguerre-Chariol, and Jérôme Rose
- Subjects
manufactured TiO2 nanomaterials ,anthropogenic emission ,river ecosystem ,environmental exposure ,aggregation ,sediment accumulation ,Environmental sciences ,GE1-350 - Abstract
Several industries manufacture and process large quantities of engineered nanomaterials, thus increasing the potential for their environmental release during waste management and disposal. Herein, we quantified the release and spatial distribution of titanium dioxide nanomaterials (TiO2 NMs) emitted from an industrial waste stream that flows into a nearby river. Two sampling campaigns were carried out on the river in fall 2017 and spring 2018 at selected sites upstream and downstream of the Industrial Effluent and an urban wastewater treatment plant (WWTP). Significant Ti accumulation was detected in the sediments at the Industrial Effluent and WWTP sites for both fall and spring samples, with measured Ti concentrations of 75–193 mg Ti/kg reaching 21–55× that of the local background upstream. X-ray diffraction analysis confirmed the anatase and rutile mineralogy of the inputs. River surface waters were filtered on-site to distinguish between particulate (>0.20 μm), colloidal (0.02–0.20 μm), and dissolved and/or small nanoparticulate (NP) (0.20 μm), and that the particles sediment rapidly near the emission source and accumulate in the sediment.
- Published
- 2020
- Full Text
- View/download PDF
5. In Vitro Co-Exposure to CeO2 Nanomaterials from Diesel Engine Exhaust and Benzo(a)Pyrene Induces Additive DNA Damage in Sperm and Cumulus Cells but Not in Oocytes
- Author
-
Martina Cotena, Mélanie Auffan, Virginie Tassistro, Noémie Resseguier, Jérôme Rose, and Jeanne Perrin
- Subjects
genotoxicity ,nanomaterials ,polycyclic aromatic hydrocarbons ,germ cells ,additivity ,cocktail ,Chemistry ,QD1-999 - Abstract
Benzo(a)pyrene (BaP) is a recognized reprotoxic compound and the most widely investigated polycyclic aromatic hydrocarbon in ambient air; it is widespread by the incomplete combustion of fossil fuels along with cerium dioxide nanomaterials (CeO2 NMs), which are used in nano-based diesel additives to decrease the emission of toxic compounds and to increase fuel economy. The toxicity of CeO2 NMs on reproductive organs and cells has also been shown. However, the effect of the combined interactions of BaP and CeO2 NMs on reproduction has not been investigated. Herein, human and rat gametes were exposed in vitro to combusted CeO2 NMs or BaP or CeO2 NMs and BaP in combination. CeO2 NMs were burned at 850 °C prior to mimicking their release after combustion in a diesel engine. We demonstrated significantly higher amounts of DNA damage after exposure to combusted CeO2 NMs (1 µg·L−1) or BaP (1.13 µmol·L−1) in all cell types considered compared to unexposed cells. Co-exposure to the CeO2 NMs-BaP mixture induced additive DNA damage in sperm and cumulus cells, whereas no additive effect was observed in rat oocytes. This result could be related to the structural protection of the oocyte by cumulus cells and to the oocyte’s efficient system to repair DNA damage compared to that of cumulus and sperm cells.
- Published
- 2021
- Full Text
- View/download PDF
6. CeO2 Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro
- Author
-
Martina Cotena, Mélanie Auffan, Stéphane Robert, Virginie Tassistro, Noémie Resseguier, Jérôme Rose, and Jeanne Perrin
- Subjects
nanoparticles ,DNA damage ,Oxidative stress ,reproductive toxicity ,combustion ,ageing ,Chemistry ,QD1-999 - Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are widely used in nano-based diesel additives to decrease the emission of toxic compounds, but they have been shown to increase the emission of ultrafine particles as well as the amount of released Ce. The Organization for Economic Cooperation and Development included CeO2 NMs in the priority list of nanomaterials that require urgent evaluation, and the potential hazard of aged CeO2 NM exposure remains unexplored. Herein, human and rat sperm cells were exposed in vitro to a CeO2 NM-based diesel additive (called EnviroxTM), burned at 850 °C to mimic its release after combustion in a diesel engine. We demonstrated significant DNA damage after in vitro exposure to the lowest tested concentration (1 µg·L−1) using the alkaline comet assay (ACA). We also showed a significant increase in oxidative stress in human sperm after in vitro exposure to 1 µg·L−1 aged CeO2 NMs evaluated by the H2DCF-DA probe. Electron microscopy showed no internalization of aged CeO2 NMs in human sperm but an affinity for the head plasma membrane. The results obtained in this study provide some insight on the complex cellular mechanisms by which aged CeO2 NMs could exert in vitro biological effects on human spermatozoa and generate ROS.
- Published
- 2020
- Full Text
- View/download PDF
7. Impacts and Physico-Chemical Behavior of Inorganic Nanoparticles in the Environment
- Author
-
Melanie, Auffan, Jerome, Rose, Armand, Masion, Jerome, Labille, Corinne, Chaneac, Wiesner, Mark R., Jean-Yves, Bottero, Brayner, Roberta, editor, Fiévet, Fernand, editor, and Coradin, Thibaud, editor
- Published
- 2013
- Full Text
- View/download PDF
8. Combusted-diesel additives containing CeO 2 nanomaterials shape methanogenic pathways during sludge digestion and enhance biogas production
- Author
-
Mélanie Auffan, Abdoul Karim Kabore, Anais Cuny, Oulfat Amin Ali, Mohammed Barakat, Bernard Angeletti, Olivier Proux, Jean-Yves Bottero, Nicolas Roche, Catherine Santaella, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Université Mohammed VI Polytechnique [Ben Guerir] (UM6P), Excellence Initiative of Aix-Marseille University - A*MIDEX, a French 'Investissements d’Avenir' program, through its associated Labex SERENADE project, and Duke University [Durham]
- Subjects
[SDE.IE]Environmental Sciences/Environmental Engineering ,Materials Science (miscellaneous) ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,General Environmental Science - Abstract
International audience; This study addressed the impact of nanomaterials on anaerobic digestion and biogas production (methanogenesis pathways) whencontaminanting aerobic sludge generated during wastewater treatment. Our experimental system was based on bioreactor operationalparameters aligned with the operating conditions used in wastewater treatment plants (WWTP), a contamination scenario considering thetreatment of nano-enabled products at the last stages of their life cycle, and nanomaterial concentrations close to those predicted in WWTP.The physico-chemical, microbiological and chemical engineering proxies studied all concluded that combusted nanoCeO2-enabled fuel additivestransiently increased EPS production and specific hydrolytic enzymatic activities without altering the aerobic sludge microbial communitystructure nor the C, P, N removal capacity (spiked concentrations of 130 µg.L-1 during aerobic sludge production). However, the presence in theaerobic sludge biosolids of 99.9 % of the total CeO2 injected (without any change in speciation) altered the production, structure, and activity ofthe anaerobic sludge during digestion (impacting the EPS, ATP, lipase and α–glucosidase activities). Interestingly, these modifications of theanaerobic sludge activity shaped the methanogenesis pathways from acetoclastic to hydrogenotrophic and enhanced the biogas productionwith a significant increase in generated H2. In the context of developing a sustainable energy supply, we observed a continuous improvementof the biogas production in the contaminated bioreactor, which could increase the energy recovery potential of WWTPs.
- Published
- 2022
- Full Text
- View/download PDF
9. Bacterial metabolites and particle size determine cerium oxide nanomaterial biotransformation
- Author
-
Blanche Collin, Mélanie Auffan, Emmanuel Doelsch, Olivier Proux, Isabelle Kieffer, Philippe Ortet, Catherine Santaella, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Recyclage et risque (UPR Recyclage et risque), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), European Synchroton Radiation Facility [Grenoble] (ESRF), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Bioconversion ,[SDV]Life Sciences [q-bio] ,Metal Nanoparticles ,Détoxification ,nanoparticules ,Soil ,Pseudomonas ,Environmental Chemistry ,Particle Size ,Bacteria ,Cerium ,General Chemistry ,Décontamination chimique ,Expérimentation in vitro ,Nanostructures ,Expérimentation en laboratoire ,Spectroscopie aux rayons x ,[SDE]Environmental Sciences ,P02 - Pollution - Abstract
International audience; Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescencedetected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM’s size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2- keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for
- Published
- 2022
- Full Text
- View/download PDF
10. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context
- Author
-
Mélanie Auffan, Laurent Poizat, Mohamed Barakat, Wafa Achouak, Luis Alberto Macías-Pérez, Clément Levard, Bernard Angeletti, Daniel Borschneck, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Duke University [Durham], Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Primary succession ,Environmental Engineering ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Health, Toxicology and Mutagenesis ,Bauxite residue ,Context (language use) ,Weathering ,Microbial communities ,010501 environmental sciences ,engineering.material ,01 natural sciences ,Soil ,03 medical and health sciences ,Bioremediation ,Aluminum Oxide ,Environmental Chemistry ,Waste Management and Disposal ,Soil Microbiology ,030304 developmental biology ,0105 earth and related environmental sciences ,0303 health sciences ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Microbiota ,Community structure ,Pollution ,Critical metals ,Bauxite ,Biodegradation, Environmental ,Microbial population biology ,Environmental chemistry ,engineering ,Environmental science ,Species richness ,Physicochemical characterization - Abstract
International audience; Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina highthroughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.
- Published
- 2022
- Full Text
- View/download PDF
11. Potential of Ligand-Promoted Dissolution at Mild pH for the Selective Recovery of Rare Earth Elements in Bauxite Residues
- Author
-
Claire Lallemand, Jean Paul Ambrosi, Daniel Borschneck, Bernard Angeletti, Perrine Chaurand, Andrea Campos, Morgane Desmau, Till Fehlauer, Mélanie Auffan, Jérôme Labille, Nicolas Roche, Laurent Poizat, Blanche Collin, Jérôme Rose, Clément Levard, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre Pluridisciplinaire de Microscopie Electronique et de Microanalyse (AMU CP2M), Aix Marseille Université (AMU), Deutsches Elektronen-Synchrotron [Zeuthen] (DESY), Helmholtz-Gemeinschaft = Helmholtz Association, Université Mohammed VI Polytechnique [Ben Guerir] (UM6P), ALTEO, ANR-11-LABX-0010,DRIIHM / IRDHEI,Dispositif de recherche interdisciplinaire sur les Interactions Hommes-Milieux(2011), and ANR-20-CE04-0007,RECALL,Extraction durable de métaux de valeur dans les résidus de bauxite(2020)
- Subjects
OHM Bassin Minier de Provence ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Renewable Energy, Sustainability and the Environment ,Characterization ,Speciation ,General Chemical Engineering ,Ligand-promoted Dissolution ,General Chemistry ,Rare Earth Elements (REEs) ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Bauxite Residue (BR) ,ddc:540 ,Low Molecular Weight Organic Acids (LMWOAs) ,Environmental Chemistry ,Circular Economy ,Critical Elements - Abstract
ACS sustainable chemistry & engineering 10(21), 6942 - 6951 (2022). doi:10.1021/acssuschemeng.1c08081, In a context of overexploitation of natural resources, a circular economy and particularly the extraction of resources from secondary sources are essential to sustain a number of key technologies including renewable energies. Among secondary sources, the bauxite residue contains critical elements including rare earth elements (REEs) (712 mg/kg). We investigated the use of soft and selective dissolution protocols at mild pH values (2–6) as an alternative to pyro- and hydrometallurgy for the recovery of REEs through ligand-promoted dissolution. This approach depends on the detailed characterization of the waste and the speciation of targeted elements. We assessed dissolution using low-molecular-weight organic acids and their conjugate bases. Citric acid/citrate showed satisfactory dissolution of REEs (up to 50% of light REEs) up to a pH of nearly 5, while tartaric acid/tartrate showed the best dissolution selectivity (enrichment factor up to 21.5 compared to Fe, Al, and Ti). Almost no heavy REEs were dissolved in any of the conditions tested, probably due to the high chemical stability of their bearing phases. Indeed, heavy REEs were found as discrete phosphate particles., Published by ACS Publ., Washington, DC
- Published
- 2022
- Full Text
- View/download PDF
12. The SERENADE project – A step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach
- Author
-
Sébastien Artous, Jérôme Rose, Henri Wortham, Mélanie Auffan, Gregory Brochard, Simon Clavaguera, Camille de Garidel-Thoron, Delphine Truffier-Boutry, Armand Masion, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Scheme (programming language) ,Hazard (logic) ,Computer science ,Biomedical Engineering ,Pharmaceutical Science ,Bioengineering ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[CHIM.CRIS]Chemical Sciences/Cristallography ,General Materials Science ,Product (category theory) ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,computer.programming_language ,Product design specification ,Flexibility (engineering) ,[SDE.IE]Environmental Sciences/Environmental Engineering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Material development ,[SDE.ES]Environmental Sciences/Environmental and Society ,0104 chemical sciences ,Risk analysis (engineering) ,[SDE]Environmental Sciences ,Design process ,0210 nano-technology ,computer ,Biotechnology ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; Recent research efforts have gone into formalizing and standardizing the Safe by Design process of nanomaterials. This usually results in a structured and (most often) sequential approach deliberately putting the focus on hazard and exposure issues regarding the nanomaterial itself in a bottom-up progression of material development. However, this general strategy lacks flexibility. Within the project SERENADE, a case study examining photocatalytic paint failed to validate the generally accepted Safe by Design scheme. This example examined the product (paint in this case) rather than the nanomaterials it contains. It was found that the essential parameters, namely product specification and functionality, failed to fit into a rigid bottom-up approach and indicated the need for alternative Safe by Design strategies.
- Published
- 2021
- Full Text
- View/download PDF
13. Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications
- Author
-
Wei Liu, Arnaud Chaix, Magali Gary-Bobo, Bernard Angeletti, Armand Masion, Afitz Da Silva, Morgane Daurat, Laure Lichon, Marcel Garcia, Alain Morère, Khaled El Cheikh, Jean-Olivier Durand, Frédérique Cunin, and Mélanie Auffan
- Subjects
porous silicon nanoparticle ,surface functionalization ,PEG ,mannose ,stealth properties ,biodegradation kinetic ,biocompatibility ,Chemistry ,QD1-999 - Abstract
A challenge regarding the design of nanocarriers for drug delivery is to prevent their recognition by the immune system. To improve the blood residence time and prevent their capture by organs, nanoparticles can be designed with stealth properties using polymeric coating. In this study, we focused on the influence of surface modification with polyethylene glycol and/or mannose on the stealth behavior of porous silicon nanoparticles (pSiNP, ~200 nm). In vivo biodistribution of pSiNPs formulations were evaluated in mice 5 h after intravenous injection. Results indicated that the distribution in the organs was surface functionalization-dependent. Pristine pSiNPs and PEGylated pSiNPs were distributed mainly in the liver and spleen, while mannose-functionalized pSiNPs escaped capture by the spleen, and had higher blood retention. The most efficient stealth behavior was observed with PEGylated pSiNPs anchored with mannose that were the most excreted in urine at 5 h. The biodegradation kinetics evaluated in vitro were in agreement with these in vivo observations. The biocompatibility of the pristine and functionalized pSiNPs was confirmed in vitro on human cell lines and in vivo by cytotoxic and systemic inflammation investigations, respectively. With their biocompatibility, biodegradability, and stealth properties, the pSiNPs functionalized with mannose and PEG show promising potential for biomedical applications.
- Published
- 2017
- Full Text
- View/download PDF
14. The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach
- Author
-
Jérôme Labille, Stéphane Peyron, Thierry Heulin, Sébastien Artous, Mélanie Auffan, Claire A. Auplat, Thierry Rabilloud, Isabelle Capron, Henri Wortham, Marie Carrière, Delphine Truffier-Boutry, Armand Masion, Laurent Charlet, Bernard Cathala, Camille de Garidel-Thoron, Gregory Brochard, Catherine Santaella, Thierry Orsière, Simon Clavaguera, Jérôme Rose, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), ARC-Nucleart CEA Grenoble (NUCLEART), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL), Dauphine Recherches en Management (DRM), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ALLIOS 105 Chemin de Saint-Menet aux Accates, 13011 Marseille, France, Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Ecosystèmes continentaux et risques environnementaux (ECCOREV), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Protéomique pour la Microbiologie, l'Immunilogie et la Toxicologie (PROMIT), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire Chimie de l'environnement (LCE), ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département des Technologies des NanoMatériaux (DTNM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ALLIOS, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Protéomique pour la Microbiologie, l'Immunologie et la Toxicologie (PROMIT), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CNRS for the funding of the IRP iNOVE, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC), ANR11-IDEX-0001-02, Centre National de la Recherche Scientifique (CNRS), European Commission., Institut de Chimie du CNRS (INC)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Technology readiness ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Computer science ,media_common.quotation_subject ,Biomedical Engineering ,Pharmaceutical Science ,Bioengineering ,02 engineering and technology ,Advanced materials ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Resource (project management) ,Originality ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[CHIM.CRIS]Chemical Sciences/Cristallography ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,media_common ,[SDE.IE]Environmental Sciences/Environmental Engineering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Hazard ,[SDE.ES]Environmental Sciences/Environmental and Society ,0104 chemical sciences ,Variety (cybernetics) ,[SDV.ETH]Life Sciences [q-bio]/Ethics ,Engineering management ,Product life-cycle management ,[SDE]Environmental Sciences ,Design process ,0210 nano-technology ,Biotechnology ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; Developing safe nanomaterials has become a major concern in all the industry sectors using advanced materials. However, there are very few initiatives addressing this issue. The SERENADE project, with its long-term funding scheme, provided a unique opportunity to foster a coordinated, yet diverse approach to investigate the safe-by-design development of nanomaterials in a variety of application fields, using a targeted set of inter-disciplinary case studies. The originality of the approach was to cover as many multiple technology readiness levels (TRLs) and life cycle stages as possible, combined with shared hazard and end- of-life assessments in an effort towards a (more) comprehensive and resource driven research.
- Published
- 2021
- Full Text
- View/download PDF
15. MESOCOSM: A mesocosm database management system for environmental nanosafety: MESOCOSM
- Author
-
Christine Ogilvie Hendren, Mélanie Auffan, Jérôme Rose, Mark R. Wiesner, Ali Ayadi, Camille de Garidel-Thoron, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Duke University [Durham]
- Subjects
Mesocosm testing ,Materials Science (miscellaneous) ,Engineered nanomaterials ,02 engineering and technology ,010501 environmental sciences ,computer.software_genre ,01 natural sciences ,Database management system ,Mesocosm ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Environmental hazard ,Paint ,Humans ,Safety, Risk, Reliability and Quality ,Ecosystem ,0105 earth and related environmental sciences ,Risk assessment ,FAIR data ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Environmental exposure and hazards ,Database ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Public Health, Environmental and Occupational Health ,Environmental exposure ,Environmental Exposure ,021001 nanoscience & nanotechnology ,Hazard ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Nanostructures ,Manufacturing sector ,13. Climate action ,Environmental science ,Database Management Systems ,Occupational exposure ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,0210 nano-technology ,Safety Research ,computer - Abstract
International audience; Engineered nanomaterials (ENMs) are intentionally designed and produced by humans to revolutionize the manufacturing sector, such as electronic goods, paints, tires, clothes, cosmetic products, and biomedicine. With the spread of these ENMs in our daily lives, scientific research have generated a huge amount of data related to their potential impacts on human and environment health. To date, these data are gathered in databases mainly focused on the (eco)toxicity and occupational exposure to ENMs. These databases are therefore not suitable to build well-informed environmental exposure scenarios covering the life cycle of ENMs. In this paper, we report the construction of one of the first centralized mesocosm database management system for environmental nanosafety (called MESOCOSM) containing experimental data collected from mesocosm experiments suited for understanding and quantifying both the environmental hazard and exposure. The database, which is publicly available through https://aliayadi.github.io/MESOCOSM-database/, contains 5200 entities covering tens of unique experiments investigating Ag, CeO 2 , CuO, TiO 2-based ENMs as well as nano-enabled products. These entities are divided into different groups i.e. physicochemical properties of ENMS, environmental, exposure and hazard endpoints, and other general information about the mesocosm testing, resulting in more than forty parameters in the database. The MESOCOSM database is equipped with a powerful application, consisting of a graphical user interface (GUI), allowing users to manage and search data using complex queries without relying on programmers. MESOCOSM aims to predict and explain ENMs behavior and fate in different ecosystems as well as their potential impacts on the environment at different stages of the nanoproducts lifecycle. MESOCOSM is expected to benefit the nanosafety community by providing a continuous source of critical information and additional characterization factors for predicting ENMs interactions with the environment and their risks.
- Published
- 2021
- Full Text
- View/download PDF
16. Aquatic mesocosm strategies for the environmental fate and risk assessment of engineered nanomaterials
- Author
-
Mélanie Auffan, Danielle L. Slomberg, Catherine Santaella, Andrea Carboni, Armand Masion, Mohammad Nassar, Jérôme Rose, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Duke University [Durham], ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Future studies ,010504 meteorology & atmospheric sciences ,Life cycle ,Engineered nanomaterials ,environmental risk ,010501 environmental sciences ,Risk Assessment ,01 natural sciences ,Mesocosm ,engineered nanomaterials ,Environmental protection ,Hazardous waste ,life-cycle ,aquatic ecosystem ,Environmental Chemistry ,Ecosystem ,14. Life underwater ,0105 earth and related environmental sciences ,Aquatic ecosystem ,General Chemistry ,Hazard ,Nanostructures ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,Risk assessment - Abstract
International audience; In the past decade, mesocosms have emerged as a useful tool for the environmental study of engineered nanomaterials (ENMs) as they can mimic the relevant exposure scenario of contamination. Herein, we analyzed the scientific outcomes of aquatic mesocosm experiments, with regard to their designs, the ENMs tested, and the end points investigated. Several mesocosm designs were consistently applied in the past decade to virtually mimic various contamination scenarios with regard to ecosystem setting as well as ENMs class, dose, and dosing. Statistical analyses were carried out with the literature data to identify the main parameters driving ENM distribution in the mesocosms and the potential risk posed to benthic and planktonic communities as well as global ecosystem responses. These analyses showed that at the end of the exposure, mesocosm size (water volume), experiment duration, and location indoor/outdoor had major roles in defining the ENMs/metal partitioning. Moreover, a higher exposure of the benthic communities is often observed but did not necessarily translate to a higher risk due to the lower hazard posed by transformed ENMs in the sediments (e.g., aggregated, sulfidized). However, planktonic organisms were generally exposed to lower concentrations of potentially more reactive and toxic ENM species. Hence, mesocosms can be complementary tools to existing standard operational procedures for regulatory purposes and environmental fate and risk assessment of ENMs. To date, the research was markedly unbalanced toward the investigation of metal-based ENMs compared to metalloid-and carbon-based ENMs but also nanoenabled products. Future studies are expected to fill this gap, with special regard to high production volume and potentially hazardous ENMs. Finally, to take full advantage of mesocosms, future studies must be carefully planned to incorporate interdisciplinary approaches and ensure that the large data sets produced are fully exploited.
- Published
- 2021
- Full Text
- View/download PDF
17. Cytotoxicity and genotoxicity of lanthanides for Vicia faba L. are mediated by their chemical speciation in different exposure media
- Author
-
Ana Romero-Freire, Mélanie Auffan, Laure Giamberini, Jan E. Groenenberg, Sylvie Cotelle, V González, Hao Qiu, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada (UGR), Wageningen University and Research [Wageningen] (WUR), Shanghai Jiao Tong University [Shanghai], Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Universidad de Granada = University of Granada (UGR)
- Subjects
Environmental Engineering ,Mitotic index ,Bodemscheikunde en Chemische Bodemkwaliteit ,010504 meteorology & atmospheric sciences ,Gadolinium ,Phosphate ,010501 environmental sciences ,Lutetium ,medicine.disease_cause ,Ecotoxicology ,01 natural sciences ,Lanthanoid Series Elements ,Plant Roots ,chemistry.chemical_compound ,Toxicity Tests ,medicine ,Environmental Chemistry ,Waste Management and Disposal ,Rare earth elements ,0105 earth and related environmental sciences ,Cerium ,Pollution ,Vicia faba ,chemistry ,Distilled water ,Toxicity ,Composition (visual arts) ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Genotoxicity ,Soil Chemistry and Chemical Soil Quality ,Nuclear chemistry ,DNA Damage - Abstract
International audience; A comprehensive study of the toxicity of lanthanides (LN) in relation to the media composition will enhance the prediction of their potential adverse effects for living organisms. Here we examined the effect of different media on the V. faba root elongation and on the cytotoxic (mitotic index) and the genotoxic (micronucleated cell number) effects from toxicity tests with Ce, Gd and Lu (100, 800 and 6400 μg L −1). Three different exposure media were selected: the standard Hoagland media (SH); an alternative SH, without phosphates (SH-P); and distilled water (DW). In the SH no cyto-genotoxic effects were observed and even, for low LN content, potential root elongation stimulation was reported. The absence of toxic effects was explained by a drastic decrease of the total dissolved LN concentration due to the presence of phosphates causing LN precipitation. In SH-P, LN remained largely soluble and inhibition of root elongation was observed mainly for the highest treatments. While in the tests done in DW, toxic effects were obtained for all treatments. Our results showed that in absence of phosphorous, LN appear mainly as free form and complexed in carbonates and sulphates, and can cause toxic effects, whereas toxicity is not expected when phosphorous is available in aquatic media. The highest LN root contents were observed for the tests using distilled water, possibly due to the absence of competition by Ca 2+ for uptake. The present work demonstrated that media composition has a great impact in assessing the ecotoxicology of lanthanides.
- Published
- 2021
- Full Text
- View/download PDF
18. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species.
- Author
-
Ester Artells, Julien Issartel, Mélanie Auffan, Daniel Borschneck, Antoine Thill, Marie Tella, Lenka Brousset, Jérôme Rose, Jean-Yves Bottero, and Alain Thiéry
- Subjects
Medicine ,Science - Abstract
The CeO₂ NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO₂ NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L⁻¹ CeO₂ exposures for 48 h. Acute toxicity bioassays were performed to determine EC₅₀ of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO₂ NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO₂ NPs than D. pulex, showing 48-h EC₅₀ of 0.26 mg.L⁻¹ and 91.79 mg.L⁻¹, respectively. Both species interacted with CeO₂ NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO₂ NPs for both species. A 48-h exposure to 1 mg.L⁻¹ induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L⁻¹ and 100 mg.L⁻¹) than the one of D. pulex. These interspecific toxic effects of CeO₂ NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO₂ aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO₂ NPs exposure in daphnids are discussed.
- Published
- 2013
- Full Text
- View/download PDF
19. CeO2 Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro
- Author
-
Jeanne Perrin, Stéphane Robert, Noémie Resseguier, Jérôme Rose, Virginie Tassistro, Mélanie Auffan, Martina Cotena, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Duke University [Durham], Centre recherche en CardioVasculaire et Nutrition = Center for CardioVascular and Nutrition research (C2VN), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Aix Marseille Université (AMU), Hôpital de la Timone [CHU - APHM] (TIMONE), Hôpital de la Conception [CHU - APHM] (LA CONCEPTION), ANR-11-IDEX-0007-02/10-LABX-0064,Imust,Institut for Multiscale Science and Technology : from Fundamental Physics and Chemistry to Engineering in New Material and Processes and Ecotechnologies(2011), ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Department of Civil and Environmental Engineering [Durham] (CEE), Plateforme AMUTICYT [Marseille], Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AMIDEXH2020UNIV-AMUCNRsECCOREV n° 3098, ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011), European Project: 713750,H2020,H2020-MSCA-COFUND-2015,DOC2AMU(2016), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR: 11-IDEX-0001,AMIDEX,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)
- Subjects
reproductive toxicity ,DNA damage ,NMs life cycle ,General Chemical Engineering ,media_common.quotation_subject ,010501 environmental sciences ,Diesel engine ,medicine.disease_cause ,01 natural sciences ,Article ,lcsh:Chemistry ,03 medical and health sciences ,Diesel fuel ,medicine ,General Materials Science ,Internalization ,030304 developmental biology ,0105 earth and related environmental sciences ,media_common ,[SDV.EE.SANT]Life Sciences [q-bio]/Ecology, environment/Health ,0303 health sciences ,Chemistry ,Sperm ,In vitro ,3. Good health ,lcsh:QD1-999 ,13. Climate action ,Oxidative stress ,ageing ,[SDE]Environmental Sciences ,Biophysics ,nanoparticles ,Reproductive toxicity ,combustion - Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are widely used in nano-based diesel additives to decrease the emission of toxic compounds, but they have been shown to increase the emission of ultrafine particles as well as the amount of released Ce. The Organization for Economic Cooperation and Development included CeO2 NMs in the priority list of nanomaterials that require urgent evaluation, and the potential hazard of aged CeO2 NM exposure remains unexplored. Herein, human and rat sperm cells were exposed in vitro to a CeO2 NM-based diesel additive (called EnviroxTM), burned at 850 °, C to mimic its release after combustion in a diesel engine. We demonstrated significant DNA damage after in vitro exposure to the lowest tested concentration (1 µ, g·, L&minus, 1) using the alkaline comet assay (ACA). We also showed a significant increase in oxidative stress in human sperm after in vitro exposure to 1 µ, 1 aged CeO2 NMs evaluated by the H2DCF-DA probe. Electron microscopy showed no internalization of aged CeO2 NMs in human sperm but an affinity for the head plasma membrane. The results obtained in this study provide some insight on the complex cellular mechanisms by which aged CeO2 NMs could exert in vitro biological effects on human spermatozoa and generate ROS.
- Published
- 2020
- Full Text
- View/download PDF
20. The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem
- Author
-
Corinne Chanéac, Mélanie Auffan, Mark R. Wiesner, Bernard Angeletti, Jean-Yves Bottero, Lenka Brousset, Jérôme Rose, Alain Thiéry, E. Morel, Julien Issartel, Marie Tella, Clément Levard, Jean-Louis Hazemann, Catherine Santaella, Mohamed Barakat, Philippe Ortet, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Analyses des eaux, sols et végétaux (US Analyses), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Duke University [Durham], Centre National de la Recherche Scientifique (CNRS)European Commission, ANR-10-NANO-0006,MESONNET,Utilisation de mésocosmes terrestres et aquatiques en réseau pour l'évaluation du risque associé à la dispersion de nanoparticules manufacturées(2010), European Project: 310584,EC:FP7:NMP,FP7-NMP-2012-LARGE-6,NANOREG(2013), Novel Advanced Nano-Objects (LCMCP-NANO), Matériaux Hybrides et Nanomatériaux (LCMCP-MHN), Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Matériaux, Rayonnements, Structure (MRS)
- Subjects
nanomaterials [EN] ,River ecosystem ,Materials Science (miscellaneous) ,media_common.quotation_subject ,Argent ,010501 environmental sciences ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,01 natural sciences ,Mesocosm ,Plancton ,03 medical and health sciences ,Milieu lotique ,Water column ,Ecosystem ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0105 earth and related environmental sciences ,General Environmental Science ,media_common ,0303 health sciences ,Stress oxydatif ,Impact sur l'environnement ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Plankton ,Bioaccumulation ,[SDE.ES]Environmental Sciences/Environmental and Society ,Speciation ,13. Climate action ,Benthic zone ,Environmental chemistry ,M40 - Écologie aquatique ,[SDE]Environmental Sciences ,Environmental science ,P02 - Pollution - Abstract
International audience; Silver nanomaterials with different shapes (spheres, plates, wires, rods, cubes) are valued by industries and scientists for their shape-dependent properties which make them useful for diverse applications. In a saferby-design perspective, controlling the shape of Ag nanomaterials could be an option to increase their properties while lowering either their hazard or their exposure potentials. Nine indoor aquatic mesocosms reproducing a lotic ecosystem were contaminated with chronic low-level additions of Ag nanospheres (Sp-Ag) and nanoplates (Pl-Ag) for a month. A shape-dependent impact under such environmentally relevant exposure conditions was observed. Pl-Ag induced a moderate oxidative stress in adult Gammarus fossarum (after molting) and a hormesis effect on planktonic microbial communities, while Sp-Ag had no effect. In an environmental risk perspective, our results highlight which ecological niches of a lotic ecosystem would be more impacted by Pl-Ag: (i) >72% of the total Ag was found fully sulfidized in surficial sediment and had only a moderate impact on benthic macro-organisms, (ii) only 11% to 15% of the Ag remained in the water column after 1 month, but Ag was under a more reactive speciation that impacts the planktonic community.
- Published
- 2020
- Full Text
- View/download PDF
21. Anthropogenic Release and Distribution of Titanium Dioxide Particles in a River Downstream of a Nanomaterial Manufacturer Industrial Site
- Author
-
Jérôme Rose, Nelly Guéniche, Andrea Campos, Olivier Aguerre-Chariol, Daniel Borschneck, Bernard Angeletti, Mélanie Auffan, Danielle L. Slomberg, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Duke University [Durham], Fédération Sciences Chimiques Marseille (FSCM), Institut National de l'Environnement Industriel et des Risques (INERIS), Centre National de la Recherche Scientifique (CNRS)European CommissionFrench Agency for the Environmental and Energetic Management (ADEME) - 2015 CORTEA call1581C0027, ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), and ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011)
- Subjects
Anatase ,010504 meteorology & atmospheric sciences ,manufactured TiO 2 nanomaterials ,environmental exposure ,010501 environmental sciences ,01 natural sciences ,Industrial waste ,anthropogenic emission ,chemistry.chemical_compound ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,General Environmental Science ,lcsh:GE1-350 ,river ecosystem ,sediment accumulation ,aggregation ,Sediment ,Environmental exposure ,Particulates ,manufactured TiO2 nanomaterials ,6. Clean water ,chemistry ,13. Climate action ,Rutile ,Environmental chemistry ,Titanium dioxide ,[SDE]Environmental Sciences ,Environmental science ,Sewage treatment - Abstract
International audience; Several industries manufacture and process large quantities of engineered nanomaterials, thus increasing the potential for their environmental release during waste management and disposal. Herein, we quantified the release and spatial distribution of titanium dioxide nanomaterials (TiO2 NMs) emitted from an industrial waste stream that flows into a nearby river. Two sampling campaigns were carried out on the river in fall 2017 and spring 2018 at selected sites upstream and downstream of the Industrial Effluent and an urban wastewater treatment plant (WWTP). Significant Ti accumulation was detected in the sediments at the Industrial Effluent and WWTP sites for both fall and spring samples, with measured Ti concentrations of 75–193 mg Ti/kg reaching 21–55× that of the local background upstream. X-ray diffraction analysis confirmed the anatase and rutile mineralogy of the inputs. River surface waters were filtered on-site to distinguish between particulate (>0.20 μm), colloidal (0.02–0.20 μm), and dissolved and/or small nanoparticulate (NP) (0.20 μm), and that the particles sediment rapidly near the emission source and accumulate in the sediment.
- Published
- 2020
- Full Text
- View/download PDF
22. Multivariate analysis of the exposure and hazard of ceria nanomaterials in indoor aquatic mesocosms
- Author
-
Mohammad Nassar, Catherine Santaella, Armand Masion, Mélanie Auffan, Jérôme Rose, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie de Strasbourg, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Biologie végétale et microbiologie environnementale - UMR7265 (BVME), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), NanoInformaTIX, French National Research Agency (ANR)European project NanoInformaTIXH2020-NMBP-TO-IND-2018-2020-814426Centre National de la Recherche Scientifique (CNRS)European Commission, ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Multivariate analysis ,Materials Science (miscellaneous) ,Aquatic ecosystem ,02 engineering and technology ,010501 environmental sciences ,Contamination ,021001 nanoscience & nanotechnology ,01 natural sciences ,Hazard ,Mesocosm ,Surface coating ,13. Climate action ,Environmental chemistry ,[SDE]Environmental Sciences ,Environmental science ,Ecosystem ,0210 nano-technology ,Risk assessment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
International audience; The vast diversity of applications using nanomaterials and enhanced physicochemical properties at the nanoscale have raised questions concerning their potential environmental risks. Assessing the risk of nanomaterials in a real ecosystem is extremely challenging because of the system complexity and the relevant environmental doses tested. To provide ultimate interpretations about nanomaterial risk assessment, we combined ceria nanomaterial behavior, fate and impact analysis within indoor aquatic mesocosms with multivariate analysis. Principal Component Analysis (PCA) showed that the exposure scenario to CeO 2 nanoparticles (NPs) constitutes the main parameter to consider while investigating the risk for a given ecosystem. Moreover, following single pulse dosing of CeO 2 NPs, the global response of the pond ecosystem was time dependent. However, multiple dosing contamination failed to significantly perturb the system over time. Finally, the NP surface coating was found to play a secondary role and to affect the global response of the pond ecosystem in the short term only.
- Published
- 2020
- Full Text
- View/download PDF
23. The necessity of investigating a freshwater-marine continuum using a mesocosm approach in nanosafety: The case study of TiO2 MNM-based photocatalytic cement
- Author
-
Alain Thiéry, Amélie Châtel, Simon Clavaguera, Lenka Brousset, Yohann Gandolfo, Hanane Perrein-Ettajani, Isabelle Métais, Perrine Chaurand, Mélanie Bruneau, Mélanie Auffan, Mohammed Mouloud, Catherine Mouneyrac, Jérôme Rose, Armand Masion, Mer, molécules et santé EA 2160 (MMS), Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes (UN)-Université de Nantes (UN)-Le Mans Université (UM)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Duke University [Durham], Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-13-CESA-0014,nanoSALT,Nanomatériaux à travers un gradient de salinité: exposition et effets ecotoxicologiques au cours de leur cycle de vie (production, utilisation, fin de vie)(2013), European Project: 310584,EC:FP7:NMP,FP7-NMP-2012-LARGE-6,NANOREG(2013), Université Catholique de l'Ouest (UCO), Le Mans Université (UM)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, BIOlogie des populations, Stress, Santé, Environnement (BIOSSE), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials Science (miscellaneous) ,Context (language use) ,Scrobicularia plana ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Mesocosm ,Manufactured nanomaterials ,Water column ,Planorbarius corneus ,Safety, Risk, Reliability and Quality ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Cement ,biology ,Public Health, Environmental and Occupational Health ,021001 nanoscience & nanotechnology ,biology.organism_classification ,13. Climate action ,Bioaccumulation ,Environmental chemistry ,[SDE]Environmental Sciences ,Environmental science ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,0210 nano-technology ,Safety Research ,TiO2MNMs - Abstract
International audience; Production of Manufactured Nanomaterials (MNMs) has increased extensively due to economic interest in the current years. However, this widespread use raises concern about their impact on human and environment. Current efforts are made, both at national and international levels to help developing safer MNMs in the market. In order to assess hazards of MNMs, it is important to take into account exposome parameters in order to link fate and behavior of MNMs to their potential toxicity. In that context, the aim of this study was to investigate the effects of TiO2 MNMs-based cement at different levels of its life cycle (TiO2MNMs, cement containing TiO2 MNMs) on two exposure mesocosm scenarios mimicking: marine conditions using the bivalve Scrobicularia plana and freshwater conditions using the gastropod Planorbarius corneus for 28 days, allowing measurements of physical-chemical parameters throughout the duration of the exposure. Similar results were observed in both exposure conditions since in the two scenarios Ti was removed from the water column and accumulated in surficial sediments. While in P. corneus, statistically different concentrations of Ti were measured in the digestive glands compared to controls following exposure to TiO2 MNMs, elevated background of Ti concentrations were measured in the controls of S. plana that did not allow to discriminating any bioaccumulation process. In addition, both TiO2 MNMs and TiO2MNM-based cement exposed S. plana did not present any activation of the p38 mitogen-activated protein kinase (MAPKs). This study demonstrates the robustness of using both freshwater and marine mesocosms for evaluation of risk associated with nanomaterial.
- Published
- 2020
- Full Text
- View/download PDF
24. Ontology-based NLP information extraction to enrich nanomaterial environmental exposure database
- Author
-
Jérôme Rose, Ali Ayadi, Mélanie Auffan, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Duke University [Durham], ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Complex Systems and Translational Bioinformatics [Strasbourg] (CSTB), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Department of Civil and Environmental Engineering [Durham] (CEE)
- Subjects
NLP techniques ,Engineered nanomaterials ,Information extraction ,Computer science ,media_common.quotation_subject ,02 engineering and technology ,Ontology (information science) ,computer.software_genre ,Field (computer science) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Domain ontology ,0202 electrical engineering, electronic engineering, information engineering ,Quality (business) ,General Environmental Science ,media_common ,Database ,business.industry ,Experimental data ,020206 networking & telecommunications ,Environmental exposure ,Hazard ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Mesocosms ,3. Good health ,[SDE]Environmental Sciences ,Database enrichment ,General Earth and Planetary Sciences ,020201 artificial intelligence & image processing ,Artificial intelligence ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,business ,computer ,Natural language processing - Abstract
International audience; In recent years, nanotechnologies have led to undeniable progress in any domains, such as electronics, materials and medicine. Despite the benefits of such a technology, a careful assessment of the potential risks for Human and Environmental health have to be studied. Assessing exposure and hazard to nanomaterials is a major challenge in the field of environmental sciences. This task requires to gather a large amount of meaningful experimental data usually generated by laboratory experiments. A first database of environmental exposure to nanomaterials (EXPOSED database) has been developed to gather data generated during mesocosm experiments. The challenge is now to enrich this database with more data from scientific articles in related fields. Herein, we present an ontology-based Natural Language Processing (NLP) approach to automatically extract and transfer data from text sources to database. This approach combines the use of NLP techniques and a domain ontology to automatically extract environmental exposure and hazards information. This approach was tested to enrich the EXPOSED database and indicators of quality highlight that this approach is effective and promising.
- Published
- 2020
- Full Text
- View/download PDF
25. Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing?
- Author
-
Mélanie Auffan, Armand Masion, Jérôme Rose, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), ANR-11-IDEX-0001-02/11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Masion, Armand, and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,lcsh:Technology ,Article ,Mesocosm ,nanomaterial ,environmental aging ,mesocosm ,material life-time ,General Materials Science ,lcsh:Microscopy ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,lcsh:QC120-168.85 ,lcsh:QH201-278.5 ,lcsh:T ,Life time ,021001 nanoscience & nanotechnology ,Hazard ,[SDE.ES]Environmental Sciences/Environmental and Society ,lcsh:TA1-2040 ,[SDE]Environmental Sciences ,Environmental science ,Environmental aging ,lcsh:Descriptive and experimental mechanics ,Biochemical engineering ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,0210 nano-technology ,lcsh:Engineering (General). Civil engineering (General) ,lcsh:TK1-9971 - Abstract
International audience; Traditional aging protocols typically examine only the e↵ects of a limited number of stresses, and relatively harsh conditions may trigger degradation mechanisms that are not observed in actual situations. Environmental aging is, in essence, the complex interaction of multiple mechanical, physicochemical and biological stresses. As yet, there is no (pre)standardized procedure that addresses this issue in a satisfactory manner. Mesocosm experiments can be designed to specifically cover the aging of nanomaterials while characterizing the associated exposure and hazard. The scenario of exposure and the life time of the nanomaterial appear as the predominant factors in the design of the experiment, and appropriate precautions need to be taken. This should the subject of guidance that may be divided into product/application categories. 1. The Importance of the Aging Factor There are still major knowledge gaps in the risk assessment of nanomaterials, especially in the post-production stages of their life cycle. However, in most cases, the use and end-of-life phases are by far the longest periods, and this extended duration is a potential concern with regard to exposure to nanomaterials, as well as associated hazards. Apart from a few exceptions, nanomaterials with the desired properties are not used "as is", but are embedded in the final product after several formulation steps (e.g., encapsulation, attachment/embedding into a matrix, etc.) for targeted functionality, better product safety, or simply ease of use. As a consequence, the pristine/isolated nanoparticle is no longer the only compound that needs to be considered in risk assessment. The nature and the structure of the bearing matrix control the exposure to the nanomaterial and the associated hazard. In other words, the entire nano-enabled product and its evolution with time, i.e., aging, become determining factors in the risk assessment. While a newly manufactured product should not be a concern for the consumer or the environment, aging is likely to change the mobility and the speciation of embedded nanomaterials, and may cause potential adverse e↵ects towards the consumer and/or the environment. As a consequence, attention needs to be paid to the degradation of the matrix, shell(s) and coating(s) surrounding the nanomaterial in order to avoid its release in a form that is, or might become, hazardous. It is noteworthy that understanding the (bio)physicochemical mechanisms of matrix degradation leading to nanomaterial release is challenging and requires the use of powerful characterization tools [1-3]. Therefore, even if release is a direct consequence of the degradation of the matrix, aging is often studied via the quantification of the release with simple metrics.
- Published
- 2019
- Full Text
- View/download PDF
26. A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea *
- Author
-
Mélanie Auffan, Vanessa Koehlé-Divo, Catherine Mouneyrac, Bénédicte Sohm, Daniele Pauly, Laure Giamberini, Sandrine Pain-Devin, Justine Flayac, Simon Devin, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Mer, molécules et santé EA 2160 (MMS), Le Mans Université (UM)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes (UN)-Université de Nantes (UN), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes (UN)-Université de Nantes (UN)-Le Mans Université (UM)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), French National Research Agency (ANR) [ANR-3-CESA-0014/NANOSALT], CPER Lorraine-ZAM (Contrat Projet Etat Region Lorraine, Zone Atelier Moselle) Région Grand-Est, Centre National de la Recherche Scientifique (CNRS), French Research ministry, Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Le Mans Université (UM)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Region Grand-Est, Centre National de la Recherche Scientifique (CNRS)European Commission, Ministry of Research, France, and ANR-13-CESA-0014,nanoSALT,Nanomatériaux à travers un gradient de salinité: exposition et effets ecotoxicologiques au cours de leur cycle de vie (production, utilisation, fin de vie)(2013)
- Subjects
Thioredoxin Reductase 1 ,Antioxidant ,010504 meteorology & atmospheric sciences ,Copper oxide nanoparticles (CuO NP) ,Biochemical effects ,Health, Toxicology and Mutagenesis ,medicine.medical_treatment ,Defence mechanisms ,Metal Nanoparticles ,Fresh Water ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Antioxidants ,Gene expression ,medicine ,Animals ,Corbicula fluminea ,Gene ,Corbicula ,0105 earth and related environmental sciences ,Filtration rate ,Glutathione Peroxidase ,biology ,Chemistry ,Superoxide Dismutase ,Bivalve ,General Medicine ,Metabolism ,biology.organism_classification ,Catalase ,Pollution ,[SDE.ES]Environmental Sciences/Environmental and Society ,Hsp70 ,Biochemistry ,Molecular Response ,[SDE]Environmental Sciences ,Cats ,Copper ,Water Pollutants, Chemical - Abstract
International audience; Because they are widely used, copper oxide nanoparticles (CuO NPs) are likely to enter the aquatic environment and then reach the sediment. We have examined the effect of CuO NPs in the freshwater endobenthic bivalve Corbicula fluminea. Some previous studies have investigated effects at biochemical and physiological levels, but molecular endpoints are still poorly studied despite they are sensitive in early detection of NPs effect. In the present study, we have investigated short-term effects (96 h) of CuO NP (12, 30 nm; 0, 20 and 100 mg/L) using molecular endpoints as well as more conventional biochemical and physiological markers. The expression of antioxidant (CuZnSOD, MnSOD, Cat, Se-GPx, Trxr) and antitoxic (GST-Pi, HSP70, MT, Pgp, MRP1) related genes was measured at the mRNA level while anti-oxidant (SOD, TAC) and antitoxic (GST, ACP) defenses, energetic reserves and metabolism (ETS, Tri, LDH), and cellular damages (LPO) were assessed using a biochemical approach. The filtration rate measured at 96 h provided information at the physiological scale. Gene expression and filtration rate were responsive to CuO NPs but the effects differed according to the NP size. The results suggest that defense mechanisms may have been set up following 30 nm-NP exposure. The response to 12 nm-NP was lower but still showed that exposure to 12 nm-NP led to activation of cellular elimination mechanisms. The lowering of the filtration rate may have protected the organisms from the contamination. However, this raised the question of further repercussions on organism biology. Together, the results (i) indicate that CuO NP may exert effects at different levels even after a short-term exposure and (ii) point out the precocity of molecular response.
- Published
- 2019
- Full Text
- View/download PDF
27. The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalveScrobicularia plana
- Author
-
Mélanie Auffan, Clément Levard, Jérôme Labille, Catherine Mouneyrac, Hanane Perrein-Ettajani, Carole Bertrand, Laure Giamberini, Christophe Pagnout, Amélie Châtel, Simon Devin, Laurence Poirier, and Aurore Zalouk-Vergnoux
- Subjects
0106 biological sciences ,geography ,geography.geographical_feature_category ,biology ,Chemistry ,010604 marine biology & hydrobiology ,Health, Toxicology and Mutagenesis ,media_common.quotation_subject ,Estuary ,010501 environmental sciences ,biology.organism_classification ,Bivalvia ,01 natural sciences ,Salinity ,Speciation ,Ultrafiltration (renal) ,Bioaccumulation ,Environmental chemistry ,Toxicity ,Environmental Chemistry ,Scrobicularia plana ,0105 earth and related environmental sciences ,media_common - Abstract
Because of their antibacterial properties, silver (Ag) engineered nanomaterials are included in many products. The present study used a standardized Ag nanomaterial (NM-300K, 20 nm) supplied with a stabilizing agent. The aim was to investigate the behavior of Ag nanomaterial in an estuarine-like medium at 2 salinities (15 psu and 30 psu). Uptake as well as sublethal effects of Ag nanomaterial (10 μg Ag/L), its stabilizing agent, and AgNO3 (10 μg Ag/L) were assessed in the clam Scrobicularia plana, after 7 d of exposure. The release of soluble Ag from Ag nanomaterial in the experimental media was quantified by using diffusive gradient in thin films and ultrafiltration. A multibiomarker approach was employed to reveal responses of clams at subindividual and individual levels. The bioaccumulation of Ag was significantly greater at 15 psu versus 30 psu, which could be explained by differences in Ag speciation. In conclusion, the present study showed different impacts of Ag nanomaterial that were not always explained by the release of Ag ions in clams at both salinities; such impacts were particularly characterized by induction of oxidative stress, cell damage, and impairment of energetic levels. Burrowing of clams was affected by the stabilizing agent depending on the salinity tested, with stronger effects at 15 psu. Finally, the present study highlighted salinity-dependent changes in the physiology of estuarine bivalves. Environ Toxicol Chem 2016;35:2550-2561. © 2016 SETAC.
- Published
- 2016
- Full Text
- View/download PDF
28. Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials
- Author
-
Mélanie Auffan, Catherine Mouneyrac, Christine Ogilvie Hendren, Jérôme Rose, Catherine Santaella, Camille de Garidel-Thoron, Alain Thiéry, Jean-Yves Bottero, Armand Masion, Mark R. Wiesner, Laure Giamberini, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Mer, molécules et santé EA 2160 (MMS), Le Mans Université (UM)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes (UN)-Université de Nantes (UN), Department of Civil and Environmental Engineering, Duke University, Duke University [Durham], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Le Mans Université (UM)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001-02/11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011), and ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011)
- Subjects
Materials Science (miscellaneous) ,Mesocosm experiment ,Engineered nanomaterials ,Public Health, Environmental and Occupational Health ,Single step ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,01 natural sciences ,Hazard ,Environmental risk ,[SDE.ES]Environmental Sciences/Environmental and Society ,Mesocosm ,[SDE]Environmental Sciences ,Environmental science ,Biochemical engineering ,0210 nano-technology ,Safety, Risk, Reliability and Quality ,Risk assessment ,Safety Research ,Ecosystem ,0105 earth and related environmental sciences ,Environmental risk assessment - Abstract
International audience; Environmental risk assessment of nanomaterials generally relies on a decision-tree based strategy which provides guidance and protocols for the determination of a collection of hazard end-points. Mesocosm testing is based on a different approach. This method consists in monitoring the evolution of a recreated miniature ecosystem subsequent to a nanomaterial contamination. The only decision in this risk assessment strategy is the definition of an environmentally relevant exposure scenario (incl. dose), which, given current analytical capabilities, may unfavorably affect the nature and precision of parameters and end points to be determined. Despite these limitations, mesocosm testing bears clear advantages for the determination of both exposure and hazard in a single experiment, and for producing dependable and intercomparable data.
- Published
- 2019
- Full Text
- View/download PDF
29. Phytoavailability of silver at predicted environmental concentrations: does the initial ionic or nanoparticulate form matter?
- Author
-
Philippe Ortet, Mohamed Barakat, Mélanie Montes, Clément Levard, Mélanie Auffan, Claire Chevassus-Rosset, Catherine Santaella, Emmanuel Doelsch, Clément Layet, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), International Consortium for the Environmental Implications of Nanotechnology (ICEINT), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Ecosystèmes continentaux et risques environnementaux (ECCOREV), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Duke University [Durham], Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Recyclage et risque (UPR Recyclage et risque), French Environment and Energy Management Agency (ADEME), Labex SERENADE, Excellence Initiative of Aix-Marseille University - A*MIDEX, a French 'Investissements d'Avenir' program, through its associated Labex SERENADE project, INSU (CNRS), CNRS, ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
P33 - Chimie et physique du sol ,Materials Science (miscellaneous) ,F60 - Physiologie et biochimie végétale ,[SDE.MCG]Environmental Sciences/Global Changes ,Argent ,Nanoparticle ,Ionic bonding ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,chemistry.chemical_compound ,Flux (metallurgy) ,Organic matter ,0105 earth and related environmental sciences ,General Environmental Science ,chemistry.chemical_classification ,biology ,Chemistry ,Soil classification ,021001 nanoscience & nanotechnology ,biology.organism_classification ,[SDE.ES]Environmental Sciences/Environmental and Society ,Physiologie végétale ,Soil water ,Carbonate ,0210 nano-technology ,Festuca arundinacea ,Nuclear chemistry - Abstract
International audience; Silver phytoavailability in exposure scenarios close to predicted environmental concentrations (PEC) has rarely been studied. The ISO-standardized RHIZOtest, based on a root mat technique, was used to expose tall fescue (Festuca arundinacea) to silver at a concentration close to 0.0015 mg kg −1 and 100 times higher (0.15 mg kg −1) than PEC in soils (the PEC of Ag nanoparticulate in the soil range from 6 × 10 −6 to 1.4 × 10 −3 mg kg −1). Silver was supplied in the form of nanoparticles with organic (PVP) or inorganic (SiO 2) coating, or as dissolved Ag (AgNO 3), in different soil types, with contrasting properties, including pH, cationic exchange capacity, and carbonate, organic matter, and clay contents. The Ag concentration was quantified in plant roots and leaves and in soil solutions using ICP-MS spectrometry. Multivariate analyses showed that the form of Ag, nanoparticulate or ionic, had no impact on either the flux or the translocation of Ag in plants (p-value > 0.05). At a silver concentration close to PEC, Ag phytoavailability from Ag NPs or AgNO 3 was indistinguishable from that of geogenic Ag. At 100× PEC, the type of soil, mainly clay and carbonate contents , controlled the Ag flux. While both decreased Ag in soil solution, clays and carbonates showed antagonistic actions in modulating the Ag flux. We hypothesize that proton root exudation locally dissolves car-bonates and releases phytoavailable Ag, while immobilizing Ag on the edges of clays.
- Published
- 2019
- Full Text
- View/download PDF
30. Non-linear release dynamics for a CeO
- Author
-
Lorette, Scifo, Perrine, Chaurand, Nathan, Bossa, Astrid, Avellan, Mélanie, Auffan, Armand, Masion, Bernard, Angeletti, Isabelle, Kieffer, Jérôme, Labille, Jean-Yves, Bottero, and Jérôme, Rose
- Subjects
Nonlinear Dynamics ,Ultraviolet Rays ,Cerium ,Coloring Agents ,Weather ,Wood ,Nanocomposites - Abstract
The release of CeO
- Published
- 2018
31. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules
- Author
-
Françoise Rollin-Genetet, Caroline Seidel, Ester Artells, Mélanie Auffan, Alain Thiéry, Claude Vidaud, Service de Biochimie et Toxicologie Nucléaire (SBTN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Inorganic chemistry ,Metal Nanoparticles ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Toxicology ,01 natural sciences ,Redox ,Metal ,Animals ,Reactivity (chemistry) ,Cysteine ,Disulfides ,Sulfhydryl Compounds ,chemistry.chemical_classification ,Chemistry ,Circular Dichroism ,Biomolecule ,Cerium ,General Medicine ,Hydrogen-Ion Concentration ,021001 nanoscience & nanotechnology ,Combinatorial chemistry ,0104 chemical sciences ,Liver ,Catalytic oxidation ,visual_art ,[SDE]Environmental Sciences ,visual_art.visual_art_medium ,Thiol ,Rabbits ,0210 nano-technology ,Oxidation-Reduction - Abstract
International audience; The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce4+/Ce3+ redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce3+ disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.
- Published
- 2015
- Full Text
- View/download PDF
32. Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation
- Author
-
Mélanie Auffan, Perrine Chaurand, Jérôme Labille, Jérôme Rose, Nathan Bossa, Isabelle Kieffer, Bernard Angeletti, Jean-Yves Bottero, Lorette Scifo, Armand Masion, Astrid Avellan, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), BM30B/FAME, European Synchrotron Radiation Facility (ESRF), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), European Synchroton Radiation Facility [Grenoble] (ESRF), TECNALIA Foundation, 'Excellence Initiative' of Aix-Marseille University A*MIDEX, a French 'Investissements d'Avenir' program, through its associated Labex SERENADE [ANR-11-LABX-0064], European Project: 604305,EC:FP7:NMP,FP7-NMP-2013-LARGE-7,SUN(2013), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Polymer nanocomposite ,Health, Toxicology and Mutagenesis ,Weathering ,02 engineering and technology ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Stain ,Irradiation ,Photodegradation ,Photo-degradation ,0105 earth and related environmental sciences ,Nanocomposite ,Chemistry ,Polymer nanocomposites ,General Medicine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Aging of nanomaterials ,Pollution ,Wood stain ,Engineered nanomaterials (ENM) release ,Chemical engineering ,13. Climate action ,Acrylic stain ,[SDE]Environmental Sciences ,Leaching (metallurgy) ,0210 nano-technology - Abstract
International audience; The release of CeO2-bearing residues during the weathering of an acrylic stain enriched with CeO2 nanomaterial designed for wood protection (Nanobyk brand additive) was studied under two different scenarios: (i) a standard 12-weeks weathering protocol in climate chamber, that combined condensation, water spraying and UV–visible irradiation and (ii) an alternative accelerated 2-weeks leaching batch assay relying on the same weathering factors (water and UV), but with a higher intensity of radiation and immersion phases. Similar Ce released amounts were evidenced for both scenarios following two phases: one related to the removal of loosely bound material with a relatively limited release, and the other resulting from the degradation of the stain, where major release occurred. A non-linear evolution of the release with the UV dose was evidenced for the second phase. No stabilization of Ce emissions was reached at the end of the experiments. The two weathering tests led to different estimates of long-term Ce releases, and different degradations of the stain. Finally, the photo-degradations of the nanocomposite, the pure acrylic stains and the Nanobyk additive were compared. The incorporation of Nanobyk into the acrylic matrix significantly modified the response of the acrylic stain to weathering.
- Published
- 2018
- Full Text
- View/download PDF
33. Very low concentration of cerium dioxide nanoparticles induce DNA damage, but no loss of vitality, in human spermatozoa
- Author
-
Jeanne Perrin, I. Sari-Minodier, Lise Preaubert, Mélanie Auffan, Jérôme Rose, Virginie Tassistro, Blandine Courbiere, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Service de Gynécologie et Obstétrique [Marseille], Hôpital de la Conception [CHU - APHM] (LA CONCEPTION), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Hôpital de la Conception [CHU - APHM] (LA CONCEPTION ), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0301 basic medicine ,Male ,DNA damage ,Cell Survival ,media_common.quotation_subject ,chemistry.chemical_element ,Metal Nanoparticles ,Human spermatozoa ,010501 environmental sciences ,Environment ,Toxicology ,medicine.disease_cause ,01 natural sciences ,Cerium dioxide nanoparticles ,03 medical and health sciences ,chemistry.chemical_compound ,Microscopy, Electron, Transmission ,medicine ,Humans ,Internalization ,Comet assay ,0105 earth and related environmental sciences ,media_common ,[SDV.EE.SANT]Life Sciences [q-bio]/Ecology, environment/Health ,General Medicine ,Cerium ,Spermatozoa ,In vitro ,030104 developmental biology ,chemistry ,[SDV.TOX]Life Sciences [q-bio]/Toxicology ,Biophysics ,Reproductive toxicity ,DNA ,Genotoxicity - Abstract
International audience; Cerium dioxide nanoparticles (CeO 2 NP) are widely used for industrial purposes, as in diesel, paint, wood stain and as potential therapeutic applications. The Organization for Economic Cooperation and Development included CeO 2 NP in the priority list of nanomaterials requiring urgent evaluation. As metal nanoparticles can cross the blood-testis barrier, CeO 2 NP could interact with spermatozoa. The genotoxicity of CeO 2 NP was demonstrated in vitro on human cell lines and mouse gametes. However, the effects of CeO 2 NP on human spermatozoa DNA remain unknown. We showed significant DNA damage induced in vitro by CeO 2 NP on human spermatozoa using Comet assay. The genotoxicity was inversely proportional to the concentration (0.01 to 10 mg·L −1). TEM showed no internalization of CeO 2 NP into the spermatozoa. This study shows for the first time that in vitro exposure to very low concentrations of cerium dioxide nanoparticles can induce significant DNA damage in human spermatozoa. These results add new and important insights regarding the reproductive toxicity of priority nanomaterials, which require urgent evaluation.
- Published
- 2018
- Full Text
- View/download PDF
34. Reprotoxicité des nanoparticules
- Author
-
Jeanne Perrin, Thierry Orsière, Mélanie Auffan, Jean-Yves Bottero, I. Sari-Minodier, F. Greco, Blandine Courbiere, and Jérôme Rose
- Subjects
Chronic exposure ,Human fertility ,Reproductive Medicine ,business.industry ,Nanotoxicology ,Obstetrics and Gynecology ,Nanoparticle ,Nanotechnology ,General Medicine ,Business ,3. Good health ,Biotechnology - Abstract
Nanoparticles (NPs) are sized between 1 and 100 nm. Their size allows new nanoscale properties of particular interest for industrial and scientific purpose. Over the past twenty years, nanotechnology conquered many areas of use (electronic, cosmetic, textile...). While, human is exposed to an increasing number of nanoparticles sources, health impacts and, particularly on reproductive function, remains poorly evaluated. Indeed, traceability of nanoparticles use is lacking and nanotoxicology follows different rules than classical toxicology. This review focuses on the impact of NPs on health and particularly on fertility and addresses potential risks of chronic exposure to NPs on human fertility. (C) 2014 Elsevier Masson SAS. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
35. Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles
- Author
-
Blanche Collin, Samuel Legros, Philippe Ortet, Olivier Proux, Isabelle Kieffer, Catherine Santaella, Mélanie Montes, Matthieu Bravin, Mélanie Auffan, Jean-Louis Hazemann, Mohamed Barakat, Claire Chevassus-Rosset, Emmanuel Doelsch, Bernard Angeletti, Clément Layet, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Recyclage et risque (UPR Recyclage et risque), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Matériaux, Rayonnements, Structure (NEEL - MRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Recyclage et risque (Cirad-Persyst-UPR 78 Recyclage et risque), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), MRS - Matériaux, Rayonnements, Structure, and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Cerium oxide ,Nanoparticle ,02 engineering and technology ,Phytochimie ,010501 environmental sciences ,Plant Roots ,01 natural sciences ,Soil ,Solanum lycopersicum ,Coating ,Sol sableux ,Soil Pollutants ,Nanotechnologie ,Sol argileux ,media_common ,2. Zero hunger ,chemistry.chemical_classification ,biology ,Cerium ,021001 nanoscience & nanotechnology ,Pollution ,Environmental chemistry ,[SDE]Environmental Sciences ,0210 nano-technology ,P02 - Pollution ,P33 - Chimie et physique du sol ,Relation plante sol ,media_common.quotation_subject ,Inorganic chemistry ,chemistry.chemical_element ,Festuca arundinacea ,engineering.material ,Poaceae ,complex mixtures ,Environmental Chemistry ,Organic matter ,Propriété physicochimique du sol ,Technique analytique ,0105 earth and related environmental sciences ,General Chemistry ,15. Life on land ,biology.organism_classification ,chemistry ,Soil water ,engineering ,Nanoparticles - Abstract
International audience; The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg-kg(-1) of dissolved Ce-2(SO4)(3), bare and citrate coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid, of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.
- Published
- 2017
- Full Text
- View/download PDF
36. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency
- Author
-
Vesna Micic Batka, Stephan Wagner, Mélanie Auffan, Frank von der Kammer, Thilo Hofmann, Doris Schmid, Olivier Proux, Daniel Borschneck, Milica Velimirovic, Luca Carniato, Universität Wien, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Delft University of Technology (TU Delft), Helmholtz Centre for Environmental Research (UFZ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Apparent corrosion rate ,Environmental Engineering ,Hydrogen ,Groundwater remediation ,Inorganic chemistry ,Maghemite ,chemistry.chemical_element ,02 engineering and technology ,010501 environmental sciences ,engineering.material ,01 natural sciences ,Corrosion ,Milled zero valent iron ,chemistry.chemical_compound ,Degradation ,Adsorption ,Environmental Chemistry ,Hydrogeochemistry ,Waste Management and Disposal ,Dissolution ,0105 earth and related environmental sciences ,Magnetite ,Zerovalent iron ,Structural changes ,[SDE.IE]Environmental Sciences/Environmental Engineering ,021001 nanoscience & nanotechnology ,Pollution ,6. Clean water ,chemistry ,13. Climate action ,engineering ,0210 nano-technology ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; Milled zerovalent iron (milled ZVI) particles have been recognized as a promising agent for groundwater remediation because of (1) their high reactivity with chlorinated aliphatic hydrocarbons, organochlorine pesticides, organic dyes, and a number of inorganic contaminants, and (2) a possible greater persistance than the more extensively investigated nanoscale zerovalent iron. We have used laboratory-scale batch degradation experiments to investigate the effect that hydrogeochemical conditions have on the corrosion of milled ZVI and on its ability to degrade trichloroethene (TCE). The observed pseudo first-order degradation rate constants indicated that the degradation of TCE by milled ZVI is affected by groundwater chemistry. The apparent corrosion rates of milled ZVI particles were of the same order of magnitude for hydrogeochemical conditions representative for two contaminated field sites (133–140 mmol kg− 1 day− 1, indicating a milled ZVI life-time of 128–135 days). Sulfate enhances milled ZVI reactivity by removing passivating iron oxides and hydroxides from the Fe0 surface, thus increasing the number of reactive sites available. The organic matter content of 1.69% in the aquifer material tends to suppress the formation of iron corrosion precipitates. Results from scanning electron microscopy, X-ray diffraction, and iron K-edge X-ray adsorption spectroscopy suggest that the corrosion mechanisms involve the partial dissolution of particles followed by the formation and surface precipitation of magnetite and/or maghemite. Numerical corrosion modeling revealed that fitting iron corrosion rates and hydrogen inhibitory terms to hydrogen and pH measurements in batch reactors can reduce the life-time of milled ZVI particles by a factor of 1.2 to 1.7.
- Published
- 2017
- Full Text
- View/download PDF
37. Biological Fate of Fe3O4 Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry
- Author
-
Jean-Marie Devoisselle, Wei Liu, Joséphine Lai-Kee-Him, Yannick Guari, Mélanie Auffan, Afitz Da Silva, Magali Gary-Bobo, Estelle Rascol, Morgane Daurat, Patrick Bron, Bernard Angeletti, Clarence Charnay, Marie Maynadier, Christophe Dorandeu, Joël Chopineau, Marcel Garcia, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), NanoMedSyn (NMS), Centre de Biochimie Structurale [Montpellier] (CBS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Nîmes (UNIMES), Institut Charles Gerhardt, Université Montpellier 2 - Sciences et Techniques ( UM2 ), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] ( IBMM ), Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier ( ICGM ICMMM ), Université Montpellier 1 ( UM1 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de recherche en cancérologie de Montpellier ( IRCM ), Université Montpellier 1 ( UM1 ) -CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Centre de Biochimie Structurale [Montpellier] ( CBS ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Interactions cellulaires et moléculaires ( ICM ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -IFR140-Centre National de la Recherche Scientifique ( CNRS ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), School of Computer [Chine], National University of Defense Technology [Changsha], Chimie moléculaire et organisation du solide ( CMOS ), Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), NanoMedSyn, Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Beaussier, Catherine
- Subjects
safety ,General Chemical Engineering ,Nanoparticle ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Nanotechnology ,nanoparticles ,surface coating ,cell-membrane interactions ,biodistribution ,02 engineering and technology ,Polyethylene glycol ,010402 general chemistry ,01 natural sciences ,Article ,Cell membrane ,chemistry.chemical_compound ,PEG ratio ,medicine ,General Materials Science ,[INFO.INFO-BT]Computer Science [cs]/Biotechnology ,Lipid bilayer ,Chemistry ,technology, industry, and agriculture ,Mesoporous silica ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surface coating ,[INFO.INFO-BT] Computer Science [cs]/Biotechnology ,medicine.anatomical_structure ,Membrane ,Chemical engineering ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,0210 nano-technology ,[ INFO.INFO-BT ] Computer Science [cs]/Biotechnology - Abstract
International audience; The biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe 3 O 4 @MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg 1 of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones.
- Published
- 2017
- Full Text
- View/download PDF
38. Life Cycle of Nanoparticles in the Environment
- Author
-
Mark R. Wiesner, Jérôme Labille, Vladimir Vidal, Mélanie Auffan, Jean-Yves Bottero, and Catherine Santaella
- Subjects
Bioaccumulation ,Environmental science ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,0105 earth and related environmental sciences ,Nanomaterials - Published
- 2017
- Full Text
- View/download PDF
39. Theory and Methodology for Determining Nanoparticle Affinity for Heteroaggregation in Environmental Matrices Using Batch Measurements
- Author
-
Mathieu Therezien, Jean-Yves Bottero, Lauren E. Barton, Mélanie Auffan, Mark R. Wiesner, Duke University [Durham], Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
inorganic chemicals ,exposure assessment ,education ,Oxide ,Nanoparticle ,Suspension (chemistry) ,Metal ,chemistry.chemical_compound ,mental disorders ,medicine ,activated sludge ,Environmental Chemistry ,Waste Management and Disposal ,Dissolution ,health care economics and organizations ,surface and interfaces ,Chromatography ,Polyvinylpyrrolidone ,Chemistry ,technology, industry, and agriculture ,respiratory system ,Pollution ,Partition coefficient ,Activated sludge ,Chemical engineering ,visual_art ,[SDE]Environmental Sciences ,visual_art.visual_art_medium ,nanoparticles ,medicine.drug - Abstract
International audience; In this study, we present a method for determining the relative affinity of nanoparticles (NPs) for an ensemble of other particles in a complex, heterogeneous suspension. We evaluated this method for NPs heteroaggregating with suspended solids present in activated sludge. A relationship was derived between the heterogeneous affinity coefficient, alpha, and measurements over time of the distribution coefficient, gamma, of NPs measured in supernatant versus those removed by heteroaggregation and subsequent settling. Application of this method, which uses a mathematical relationship to determine alpha from experimentally measured gamma values, to a series of metal and metal oxide NPs heteroaggregated with activated sludge indicated a relative affinity in the order of pristine CeO2, TiO2 NPs, and ZnO NPs > Ag(0) NPs surface-modified with polyvinylpyrrolidone (PVP) > citrate-functionalized CeO2 NP > Ag(0) NPs surface-modified with gum arabic. This trend in relative affinity followed the observed trend in removal such that higher affinity corresponded to higher removals of NPs. Values of alpha were calculated from measured relative affinities using average diameter and concentration of the activated sludge particles. The value calculated for PVP-stabilized Ag(0) NPs was comparable to a value previously reported for the attachment of these same NPs to a biofilm. Calculations also yielded size dependence of alpha in the case of the two Ag(0) evaluated that may be linked to NP dissolution.
- Published
- 2014
- Full Text
- View/download PDF
40. Long-term aging of a CeO2 based nanocomposite used for wood protection
- Author
-
Mélanie Auffan, Jérôme Rose, Fabio Ziarelli, Jérôme Labille, Wei Liu, Jean-Yves Bottero, Christophe Geantet, Armand Masion, Marie-Ange Diot, Luca Olivi, Perrine Chaurand, Olivier Proux, RAFFINAGE (RAFFINAGE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Health, Toxicology and Mutagenesis ,UV filter ,02 engineering and technology ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Citric Acid ,Nanocomposites ,Nanomaterials ,Desorption ,Weather ,0105 earth and related environmental sciences ,Nanocomposite ,Chemistry ,Cerium ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Medicine ,Carbon-13 NMR ,021001 nanoscience & nanotechnology ,Wood ,[SDE.ES]Environmental Sciences/Environmental and Society ,Pollution ,XANES ,Chemical engineering ,13. Climate action ,Sunlight ,Degradation (geology) ,Chemical stability ,0210 nano-technology - Abstract
RAFFINAGE+CGE; A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO2-based nanocomposite used as UV filter in wood stains. ATR-FTIR and C-13 NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its alpha-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO2 core observed by XANES (Ce L-3-edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment. (C) 2014 Elsevier Ltd. All rights reserved.
- Published
- 2014
- Full Text
- View/download PDF
41. Aged TiO2-Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and Sensitizes Escherichia coli to Cadmium
- Author
-
Catherine Santaella, Bruno Allainmat, France Simonet, Corinne Chanéac, Jérome Labille, Mélanie Auffan, Jérome Rose, Wafa Achouak, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Ultraviolet Rays ,Radical ,Membrane lipids ,chemistry.chemical_element ,medicine.disease_cause ,Photochemistry ,Nanocomposites ,chemistry.chemical_compound ,Escherichia coli ,medicine ,Environmental Chemistry ,Sensitization ,Titanium ,Cadmium ,Singlet Oxygen ,Hydroxyl Radical ,Singlet oxygen ,Mutagenesis ,Electron Spin Resonance Spectroscopy ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Chemistry ,[SDE.ES]Environmental Sciences/Environmental and Society ,Oxidative Stress ,medicine.anatomical_structure ,chemistry ,13. Climate action ,Microscopy, Electron, Scanning ,Reactive Oxygen Species ,Sunscreening Agents ,Oxidative stress - Abstract
+FSI; TiO2-based nanocomposite (NC) are widely used as invisible UV protectant in cosmetics. These nanomaterials (NMs) end in the environment as altered materials. We have investigated the properties of T-Lite SF, a TiO2-NC used as sunscreen, after weathering in water and under light. We have examined the formation of ROS and their consequences on cell physiology of Escherichia coli. Our results show that aged-T-Lite SF produced singlet oxygen under low intensity long wave UV and formed hydroxyl radicals at high intensity. Despite the production of these ROS, T-Lite SF had neither effect on the viability of E. coli nor on mutant impaired in oxidative stress, did not induce mutagenesis and did not impair the integrity of membrane lipids, thus seemed safe to bacteria. However, when pre-exposed to T-Lite SF under low intensity UV, cells turned out to be more sensitive to cadmium, a priority pollutant widely disseminated in soil and surface waters. This effect was not a Trojan horse: sensitization of cells was dependent on the formation of singlet oxygen. These results provide a basis for caution, especially on NMs that have no straight environmental toxicity. It is crucial to anticipate indirect and combined effects of environmental pollutants and NMs.
- Published
- 2014
- Full Text
- View/download PDF
42. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris)
- Author
-
Mélanie Auffan, Yvan Capowiez, Eva Schreck, Annabelle Austruy, Thibaut Leveque, Yann Foucault, Camille Dumat, Christophe Mazzia, Ecole Nationale Supérieure Agronomique de Toulouse (ENSAT), Ministère de l'agriculture, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH), Institut National de la Recherche Agronomique (INRA), Géosciences Environnement Toulouse (GET), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Abeilles et Environnement (AE), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Société de Traitements Chimiques des Métaux (STCM), Toulouse, Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J), École nationale supérieure agronomique de Toulouse [ENSAT], Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J), École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Dumat, Camille
- Subjects
métal ,biotest ,Health, Toxicology and Mutagenesis ,propriétés du sol ,010501 environmental sciences ,Ecotoxicologie ,Ecotoxicology ,Toxicology ,01 natural sciences ,réponse comportementale ,absorption des métaux ,lombrics ,Soil Pollutants ,Metalloids ,Animal biology ,biology ,antimoine ,zinc ,oligo élément minéral ,04 agricultural and veterinary sciences ,General Medicine ,Pollution ,biodisponibilité des polluants ,eisenia hortensis ,absorption des métalloïdes ,bioaccumulation ,métalloïde ,cuivre ,ver de terre ,écotoxicité ,Metals ,Environmental chemistry ,Bioaccumulation ,[SDE]Environmental Sciences ,Energy source ,Bioturbation ,Lumbricus terrestris ,lumbricus terrestris ,Environmental Monitoring ,cadmium ,oligo-élément inorganique ,retombée atmosphérique ,Risk Assessment ,écotoxicité du sol ,Species Specificity ,plomb ,Biologie animale ,Toxicity Tests ,Animals ,métal lourd ,Oligochaeta ,propriété du sol ,0105 earth and related environmental sciences ,Pollutant ,Earthworm ,arsenic ,biology.organism_classification ,pollution du sol ,13. Climate action ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Ecotoxicity - Abstract
International audience; Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lum-bricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation.
- Published
- 2013
- Full Text
- View/download PDF
43. Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications
- Author
-
Laure Lichon, Armand Masion, Marcel Garcia, Magali Gary-Bobo, Mélanie Auffan, Alain Morère, Morgane Daurat, Bernard Angeletti, Khaled El Cheikh, Arnaud Chaix, Frédérique Cunin, Wei Liu, Jean-Olivier Durand, Afitz Da Silva, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), School of Computer [Chine], National University of Defense Technology [Changsha], Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier ( ICGM ICMMM ), Université Montpellier 1 ( UM1 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] ( IBMM ), Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Materials science ,Biocompatibility ,General Chemical Engineering ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Polyethylene glycol ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,porous silicon nanoparticle ,surface functionalization ,PEG ,mannose ,stealth properties ,biodegradation kinetic ,biocompatibility ,010402 general chemistry ,01 natural sciences ,Article ,lcsh:Chemistry ,[ SDE ] Environmental Sciences ,chemistry.chemical_compound ,In vivo ,PEG ratio ,General Materials Science ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[SDV.SP.PG]Life Sciences [q-bio]/Pharmaceutical sciences/Galenic pharmacology ,lcsh:QD1-999 ,chemistry ,Drug delivery ,Surface modification ,Nanocarriers ,0210 nano-technology - Abstract
International audience; A challenge regarding the design of nanocarriers for drug delivery is to prevent their recognition by the immune system. To improve the blood residence time and prevent their capture by organs, nanoparticles can be designed with stealth properties using polymeric coating. In this study, we focused on the influence of surface modification with polyethylene glycol and/or mannose on the stealth behavior of porous silicon nanoparticles (pSiNP, similar to 200 nm). In vivo biodistribution of pSiNPs formulations were evaluated in mice 5 h after intravenous injection. Results indicated that the distribution in the organs was surface functionalization-dependent. Pristine pSiNPs and PEGylated pSiNPs were distributed mainly in the liver and spleen, while mannose-functionalized pSiNPs escaped capture by the spleen, and had higher blood retention. The most efficient stealth behavior was observed with PEGylated pSiNPs anchored with mannose that were the most excreted in urine at 5 h. The biodegradation kinetics evaluated in vitro were in agreement with these in vivo observations. The biocompatibility of the pristine and functionalized pSiNPs was confirmed in vitro on human cell lines and in vivo by cytotoxic and systemic inflammation investigations, respectively. With their biocompatibility, biodegradability, and stealth properties, the pSiNPs functionalized with mannose and PEG show promising potential for biomedical applications.
- Published
- 2017
- Full Text
- View/download PDF
44. Structural and physical–chemical behavior of a CeO2 nanoparticle based diesel additive during combustion and environmental release
- Author
-
Catherine Mouneyrac, Wei Liu, Marie Tella, Mélanie Auffan, Bernard Angeletti, A Pariat, Martiane Cabié, Daniel Borschneck, Laure Giamberini, G. Landrot, Jérôme Rose, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Central China Normal University [Wuhan, China], Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Institut National de la Recherche Agronomique (INRA)-Institut de Recherche pour le Développement (IRD [France-Ouest])-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche de la matière condensée et des nanosciences (CRMCN), Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Centre National de la Recherche Scientifique (CNRS), Department of Plant and Soil Sciences, University of Delaware [Newark], Ecole Supérieure des Sciences Commerciales d'Angers (ESSCA), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), European Commission, OSU-Institut Pytheas, ANR-10-LABX-0021,RESSOURCES21,Strategic metal resources of the 21st century(2010), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Groupe ESSCA (ESSCA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and ANR-10-LABX-0021/10-LABX-0021,RESSOURCES21,Strategic metal resources of the 21st century(2010)
- Subjects
Materials science ,Materials Science (miscellaneous) ,Kinetics ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,Combustion ,01 natural sciences ,7. Clean energy ,Diesel fuel ,Colloid ,Chemical engineering ,[SDE]Environmental Sciences ,Degradation (geology) ,Chemical stability ,0210 nano-technology ,Dissolution ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
International audience; The colloidal and chemical stability of CeO2 nanoparticles used in a diesel additive (viz. Envirox™) was studied at different stages of their lifecycle (formulation, use, end of life). After combustion at a temperature close to that of diesel engines, the size of the CeO2 crystallites increased significantly without detectable Ce(III) in the structure and remaining organic compounds at the surface. Regardless of the aging conditions (salinity, light, pH), the dissolution kinetics of the combusted particles were slowed down compared to that of the initial CeO2 nanoparticles. After 2 days at 0.1 g L−1 of salts, no more than 0.01% of the total Ce was released from the 850 °C-combusted Envirox™ versus 1.5% for the uncombusted Envirox™. Both the crystal growth during combustion and the degradation of the organic matrix will govern the aggregation and dissolution kinetics/mechanisms once the CeO2 particles are released into the environment at different stages of their lifecycle. Such a study is a prerequisite needed before any assessment of the environmental risks of CeO2 nanoparticle-based diesel additives is performed.
- Published
- 2017
- Full Text
- View/download PDF
45. High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences
- Author
-
Eric Lahera, Jérôme Rose, Isabelle Kieffer, Elena F. Bazarkina, Denis Testemale, Mohammed Irar, Mélanie Auffan, Jean-Louis Hazemann, William Del Net, Marie Tella, Sara A. Thomas, Antonio Aguilar-Tapia, Alain Prat, Olivier Proux, Mauro Rovezzi, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), MRS - Matériaux, Rayonnements, Structure, Institut Néel (NEEL), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Department of Civil and Environmental Engineering [Evanston], Northwestern University [Evanston], Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), X'Press - X'Press, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), ANR-07-NANO-027-NanoSurf,ANR-07-NANO-027-NanoSurf, ANR-10-NANO-0006,MESONNET,Utilisation de mésocosmes terrestres et aquatiques en réseau pour l'évaluation du risque associé à la dispersion de nanoparticules manufacturées(2010), ANR-10-LABX-0056/10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010), ANR-10-EQPX-0027/10-EQPX-0027,EcoX,Ligne de lumière microfocus et très haute dilution à l’ESRF pour les sciences de l’environnement(2010), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), X'Press : diffraction et hautes pressions (NEEL - X'Press), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ANR-07-NANO-0027,NANOSURF,Corrélation entre l'effet de taille nanométrique et l'énergie de surface, Impact sur la structure et la réactivité de la surface.(2007), ANR-10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010), ANR-10-EQPX-0027,EcoX,Ligne de lumière microfocus et très haute dilution à l'ESRF pour les sciences de l'environnement(2010), Matériaux, Rayonnements, Structure (MRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), X'Press (X'Press), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Environmental Engineering ,Absorption spectroscopy ,Analytical chemistry ,trace elements ,02 engineering and technology ,010501 environmental sciences ,Management, Monitoring, Policy and Law ,01 natural sciences ,HERFD ,high resolution spectroscopy ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Spectroscopy ,Absorption (electromagnetic radiation) ,Waste Management and Disposal ,0105 earth and related environmental sciences ,Water Science and Technology ,X-ray absorption spectroscopy ,Ecology ,Extended X-ray absorption fine structure ,Spectrometer ,Chemistry ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Resolution (electron density) ,021001 nanoscience & nanotechnology ,Pollution ,XANES ,EXAFS ,X-Ray Absorption Spectroscopy ,13. Climate action ,0210 nano-technology ,Environmental Monitoring - Abstract
International audience; The study of the speciation of highly diluted elements by X-ray absorption spectroscopy (XAS) is extremely challenging, especially in environmental biogeochemistry sciences. Here we present an innovative synchrotron spectroscopy technique: high-energy resolution fluorescence detected XAS (HERFD-XAS). With this approach, measurement of the XAS signal in fluorescence mode using a crystal analyzer spectrometer with a ~1-eV energy resolution helps to overcome restrictions on sample concentrations that can be typically measured with a solid-state detector. We briefly describe the method, from both an instrumental and spectroscopic point of view, and emphasize the effects of energy resolution on the XAS measurements. We then illustrate the positive impact of this technique in terms of detection limit with two examples dealing with Ce in ecologically relevant organisms and with Hg species in natural environments. The sharp and well-marked features of the HERFD–X-ray absorption near-edge structure spectra obtained enable us to determine unambiguously and with greater precision the speciation of the probed elements. This is a major technological advance, with strong benefits for the study of highly diluted elements using XAS. It also opens new possibilities to explore the speciation of a target chemical element at natural concentration levels, which is critical in the fields of environmental and biogeochemistry sciences.
- Published
- 2017
- Full Text
- View/download PDF
46. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances
- Author
-
Jérôme Labille, Nathan Bossa, Mélanie Auffan, Naresh Kumar, Jérôme Rose, Jean-Yves Bottero, Pierre Doumenq, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut National de l'Environnement Industriel et des Risques (INERIS), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Health, Toxicology and Mutagenesis ,Iron ,Mineralogy ,Metal Nanoparticles ,Aquifer ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,[CHIM]Chemical Sciences ,Environmental Chemistry ,Porosity ,Groundwater ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Zerovalent iron ,geography ,geography.geographical_feature_category ,technology, industry, and agriculture ,Sediment ,General Medicine ,021001 nanoscience & nanotechnology ,Silicon Dioxide ,Pollution ,Surface coating ,Chemical engineering ,[SDE]Environmental Sciences ,Particle ,Nanoparticles ,0210 nano-technology ,Porous medium - Abstract
In this study, we assessed the transportability of zero valent iron nanoparticles (nano-Fe0) coated with different organics (carboxy methyl cellulose (CMC), poly acrylic acid (PAA), and xanthan gum) in standard porous sand and in real aquifer sediments. Our results suggest that the organic surface coatings optimized for nano-Fe0 in porous sand media do not necessarily reflect the same transportability in real field aquifer sediment. Xanthan gum-coated nano-Fe0 showed highest transportability in standard porous sand, but the performance was much lower in real aquifer sediment, whereas the PAA-coated nano-Fe0 particle showed better transportability both in aquifer sediment and in porous sand media. Nano-Fe0 without organic surface coating exhibited very low transportability and was largely retained by the porous medium. Our results suggest that the molecular weight and surface charge density of the organic may play a role in transportability of these nanoparticles. To assess the impact of organic coating on the nanoparticle reactivity with contaminants, we also conducted batch tests to follow TCE degradation using different surface coatings and found no significant difference albeit a minor delay in kinetics. Using theoretical calculations, we also estimated the potential distance traveled by nanoparticles in porous sand as well as in aquifer sediment. Our results suggest that using xanthan gum and PAA as surface coating, nano-Fe0 could travel up to 9.8 and 4.1 m, respectively, in the porous sand media as compared to 0.2 and 0.9 m in real aquifer sediment, respectively. Graphical abstract Nanoparticle mobility in porous sand vs and aquifer sediment.
- Published
- 2016
- Full Text
- View/download PDF
47. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha
- Author
-
Olivier Proux, Bénédicte Sohm, Mélanie Auffan, Christophe Pagnout, François Rodius, Laure Giamberini, Sandrine Pain-Devin, Simon Devin, Vincent Felten, Maël Garaud, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), International Consortium for the Environmental Implications of Nanotechnology iCEINT, Europôle de l'Arbois, 13545 Aix en Provence, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-10-LABX-0021,RESSOURCES21,Strategic metal resources of the 21st century(2010), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR-10-LABX-0021/10-LABX-0021,RESSOURCES21,Strategic metal resources of the 21st century(2010), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0301 basic medicine ,Freshwater bivalve ,[SDE.MCG]Environmental Sciences/Global Changes ,Biomedical Engineering ,Fresh Water ,010501 environmental sciences ,Biology ,Toxicology ,01 natural sciences ,Dreissena ,03 medical and health sciences ,Water column ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Animals ,14. Life underwater ,Biomarker Analysis ,Ecosystem ,0105 earth and related environmental sciences ,Pollutant ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Ecology ,[SDE.IE]Environmental Sciences/Environmental Engineering ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Mussel ,Cerium ,biology.organism_classification ,[SDE.ES]Environmental Sciences/Environmental and Society ,6. Clean water ,030104 developmental biology ,13. Climate action ,Environmental chemistry ,Bioaccumulation ,Nanoparticles ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,Ecotoxicity ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Oxidation-Reduction ,Biomarkers ,Water Pollutants, Chemical ,[SDV.EE.IEO]Life Sciences [q-bio]/Ecology, environment/Symbiosis - Abstract
International audience; Exposures in realistic environmental conditions are essential to properly assess the effects of emerging pollutants on ecosystems. While ceria nanoparticles (nCeO 2) production and use are expanding quickly, ecotoxicity studies remain very scarce. In this work, we set up experimental systems reproducing a simplified ecosystem to assess the effects of a chronic exposure to citrate-coated nCeO 2 (ci-CeO 2) and bare nCeO 2 (ba-CeO 2) on the freshwater mussel Dreissena polymorpha using an inte‐ grated multibiomarker approach. The fate of nanoparticles was tightly monitored to properly characterize the exposure. Organisms were exposed for three weeks and sampled weekly for biomarker analysis. Mussel filter-feeding activity resulted in significant removal of nCeO 2 from the water column. At the same time, bioaccumu‐ lation was low, reaching its maximum in the first week. Mussels bioaccumulated ci-CeO 2 three times more than ba-CeO 2 , probably due to coating-related differences in their behavior in the water column and in organisms. Meanwhile, biomarker results were integrated and synthesized using linear discriminant analysis, highlighting that pi-glutathione-S-transferase (piGST) mRNA, catalase (CAT) activity, and lysosomal system were the most impacted of the seven biomarkers singled out by the discriminant analysis. These biomarker responses indicated that mussels exposed to both forms of nCeO 2 were stressed and differentiate from the controls. Moreover,theyresponded differently to ba-CeO 2 and ci-CeO 2 exposure. How‐ ever, biomarkers used in the experimental conditions of the present study did not indicate severe nCeO 2 toxicity on mussels, as cellular damage biomarkers and mussel filtering activity were left unimpaired. However, further studies are needed to investigate if the slight perturbations observed could lead to populational impacts in the long-term.
- Published
- 2016
- Full Text
- View/download PDF
48. Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of Human Dermal Fibroblasts?
- Author
-
Laila Benameur, Jérôme Rose, Olivier Proux, Jean-Yves Bottero, Mélanie Auffan, Corinne Chanéac, Wei Liu, Alain Botta, Armand Masion, Fabio Ziarelli, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), équipe FAME, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS), International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France, Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Stereochemistry ,Metal Nanoparticles ,Nanoparticle ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Arsenic ,Adsorption ,Desorption ,Zeta potential ,Humans ,Environmental Chemistry ,Surface charge ,Magnetite Nanoparticles ,Cytotoxicity ,Cells, Cultured ,Metalloids ,Skin ,0105 earth and related environmental sciences ,chemistry.chemical_classification ,Chemistry ,General Chemistry ,Fibroblasts ,021001 nanoscience & nanotechnology ,Culture Media ,[SDE]Environmental Sciences ,Biophysics ,Thiol ,Thermodynamics ,Magnetic nanoparticles ,0210 nano-technology - Abstract
International audience; This study investigates the issue of nanoparticles/pollutants cocontamination. By combining viability assays, physicochemical and structural analysis (to probe the As speciation and valence), we assessed how gamma Fe2O3 nanoparticles can affect the cytotoxicity, the intra- and extracellular speciation of As(III). Human dermal fibroblasts were contaminated with gamma Fe2O3 nanoparticles and As(III) considering two scenarios: (i) a simultaneous coinjection of the nanoparticles and As, and (ii) an injection of the I: nanoparticles after 24 h of As adsorption in water. In both scenarios, we did not notice significant changes on the nanoparticles surface charge (zeta potential similar to -10 mV) nor hydrodynamic diameters (similar to 9.50 nm) after 24 h. We demonstrated that the coinjection of gamma Fe2O3 nanoparticles and As in the cellular media strongly affects the complexation of the intracellular As with thiol groups. This significantly increases at low doses the cytotoxicity of the As nonadsorbed at the surface of the nanoparticles. However, once As is adsorbed at the surface the desorption is very weak in the culture medium. This fraction of As strongly adsorbed at the surface is significantly less cytotoxic than As itself. On the basis of our data and the thermodynamics, we demonstrated that any disturbance of the biotransformation mechanisms by the nanoparticles (i.e., surface complexation of thiol groups with the iron atoms) is likely to be responsible for the increase of the As adverse effects at low doses.
- Published
- 2012
- Full Text
- View/download PDF
49. Direct and indirect CeO2nanoparticles toxicity forEscherichia coliandSynechocystis
- Author
-
Franck Chauvat, Ophélie Zeyons, Olivier Spalla, Nicolas Menguy, Jérôme Rose, Cédric Oréar, Mélanie Auffan, Corinne Cassier-Chauvat, Antoine Thill, and Jean Daraspe
- Subjects
Materials science ,biology ,Cell ,Synechocystis ,Biomedical Engineering ,Nanoparticle ,Toxicology ,medicine.disease_cause ,biology.organism_classification ,Microbiology ,Membrane ,medicine.anatomical_structure ,Toxicity ,medicine ,Biophysics ,Ceo2 nanoparticles ,Cytotoxicity ,Escherichia coli - Abstract
Physico-chemical interactions between nanoparticles and cell membranes play a crucial role in determining the cytotoxicity of nanoparticles, which may thereby vary depending on the nature of the ta...
- Published
- 2009
- Full Text
- View/download PDF
50. Toxicity of CeO2 nanoparticles on a freshwater experimental trophic chain: A study in environmentally relevant conditions through the use of mesocosms
- Author
-
David Baqué, Laurent Verneuil, Eric Pinelli, Florence Mouchet, Stéphanie Cadarsi, Isabelle Fourquaux, Agathe Bour, Marie Tella, Hugues Clivot, Mélanie Auffan, Eric Chauvet, Laury Gauthier, Jean-Marc Bonzom, Christophe Pagnout, Jérôme Silvestre, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France, Laboratoire d'écotoxicologie des radionucléides (PRP-ENV/SERIS/LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Microscopie Électronique Appliquée à la Biologie (CMEAB), Toulouse Réseau Imagerie-Genotoul ( TRI-Genotoul), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Aix-Marseille Université - AMU (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut de Radioprotection et de Sûreté Nucléaire - IRSN (FRANCE), Université Toulouse III - Paul Sabatier - UPS (FRANCE), International Consortium for the Environmental Implications of Nanotechnology - iCEINT (FRANCE), Université de Lorraine (FRANCE), Laboratoire Ecologie fonctionnelle et Environnement - EcoLab (Toulouse, France), Laboratoire d'ECOtoxicologie des radionucléides - LECO (Saint-Paul-lès-Durance, France), Laboratoire Interdisciplinaire des Environnements Continentaux - LIEC (Vandoeuvre-Les-Nancy, France), Centre de Microscopie Electronique Appliquée à la Biologie - CMEAB (Toulouse, france), Centre Européen de Recherche et d'Enseignement de Géosciences de l'Environnement - CEREGE (Aix en Provence, France), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Hôpital de Rangueil, Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire d'écotoxicologie des radionucléides (IRSN/PRP-ENV/SERIS/LECO), Service de Recherche et d'Expertise sur les Risques environnementaux (IRSN/PRP-ENV/SERIS), Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pleurodeles ,ved/biology.organism_classification_rank.species ,Biomedical Engineering ,Microorganisms ,Toxicology ,Ecotoxicologie ,Chironomidae ,Mesocosm ,Ecotoxicology ,Ecotoxicity ,Toxicologie ,Trophic level ,Chironomus riparius ,biology ,Consumer ,ved/biology ,Litter decomposition ,Amphibian ,biology.organism_classification ,6. Clean water ,13. Climate action ,Environmental chemistry ,[SDV.TOX]Life Sciences [q-bio]/Toxicology ,Toxicity ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology - Abstract
International audience; The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8±14.1mg Ce/kg). Mortality (35.3±6.8%) and a mean Ce concentration of 13.5±3.9mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism’s interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.