David Armisen, Jérôme Salse, Luigi Cattivelli, Daniela Bustos-Korts, Alessandro Tondelli, Darren Waite, Daniel Lang, Fred A. van Eeuwijk, Gilles Charmet, Thomas Letellier, Manuel Spannagl, Sarah Dyer, Jacob Lage, Nils Stein, Michael Alaux, Robbie Waugh, Thibault Leroy, Joanne Russell, Hakan Özkan, Caroline Pont, François Balfourier, Beat Keller, Benjamin Kilian, Klaus F. X. Mayer, Nadia Goué, Michael Seidel, Wandrille Duchemin, Georg Haberer, Márta Molnár-Láng, Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD [Bolivie]), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL), PGSB, Helmholtz Zentrum München = German Research Center for Environmental Health, Research Centre for Genomics and Bioinformatics, Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria = Council for Agricultural Research and Economics (CREA), Biometris, Applied Statistics, Wageningen University and Research [Wageningen] (WUR), Agricultural Institute [Budapest] (ATK MGI), Centre for Agricultural Research [Budapest] (ATK), Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA), KWS UK Ltd, Global Crop Diversity Trust, Earlham Institute, National Institute of Agricultural Botany (NIAB), Unité de Recherche Génomique Info (URGI), Institut National de la Recherche Agronomique (INRA), The James Hutton Institute, Department of Plant and Microbial Biology [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Leibniz Institute of Plant Genetics and Crop Plant Research, Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de la Recherche Agronomique (INRA), Biodiversité, Gènes et Communautés, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE), Helmholtz Center Munich, Council for Agricultural Research and Economics (CREA), Wageningen University and Research Center (WUR), University of Çukurova, University of California [Berkeley], University of California-University of California, Çukurova Üniversitesi, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, Helmholtz-Zentrum München (HZM), Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria (CREA), and Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)
PubMedID: 31043760 For more than 10,000 years, the selection of plant and animal traits that are better tailored for human use has shaped the development of civilizations. During this period, bread wheat (Triticum aestivum) emerged as one of the world’s most important crops. We use exome sequencing of a worldwide panel of almost 500 genotypes selected from across the geographical range of the wheat species complex to explore how 10,000 years of hybridization, selection, adaptation and plant breeding has shaped the genetic makeup of modern bread wheats. We observe considerable genetic variation at the genic, chromosomal and subgenomic levels, and use this information to decipher the likely origins of modern day wheats, the consequences of range expansion and the allelic variants selected since its domestication. Our data support a reconciled model of wheat evolution and provide novel avenues for future breeding improvement. © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc. 339728 Kyoto University California Department of Fish and Game: SFB924 Wageningen UR University of Dundee 2819103915 Région Auvergne-Rhône-Alpes European Research Council 23000816 SRESRI 2015 Seventh Framework Programme: FP7-613556, FP7/ 2007–2013 23000892 SYMBIOSE 2016 Agence Nationale de la Recherche: 14-CE02-0002 Çukurova Üniversitesi: FUA-2016–6033 The authors wish to thank the INRA Biological Resources Center on small grain cereals (https://www6.ara.inra.fr/umr1095_eng/Teams/Research/Biological-Resources-Centre) for providing seeds and passport data, and for establishing a wheat biorepository. The authors thank the Federal ex situ Genbank Gatersleben, Germany (IPK), the N. I. Vavilov All-Russian Research Institute of Plant Industry, Russia (VIR), Centre for Genetic Resources, WUR, Netherlands (CGN), Kyoto University, National Bioresource Project, Japan (NBRP), the Australian Winter Cereal Collection Tamworth, Australia (AWCC), the National Plant Germplasm System, USA (USDA-ARS), the International Center for Agriculture Research in the Dry Areas (ICARDA), the Max Planck Institute for Plant Breeding Research Cologne, Germany (MPIPZ), Germplasm Resource Unit at the John Innes Centre UK (JIC) and the Wheat and Barley Legacy for Breeding Improvement (WHEALBI) consortium for providing plant material and passport data. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/ 2007–2013) under grant agreement FP7-613556, Whealbi project (http://www.whealbi.eu/project/). R.W. and J.R. also acknowledge support from the Scottish Government Research Program and R.W. from the University of Dundee. H.O. acknowledges support from Çukurova University (FUA-2016–6033). K.F.X.M. acknowledges support from the German Federal Ministry of Food and Agriculture (2819103915) and the DFG (SFB924). T.L. acknowledges supports from the Agence Nationale pour la Recherche (BirdIslandGenomic project 14-CE02-0002), European Research Council (TREEPEACE project, grant agreement 339728) and the bioinformatics platform from Toulouse Midi-Pyrénées (Bioinfo Genotoul) for providing computing and storage resources. J.S. acknowledges support from the Région Auvergne-Rhône-Alpes and FEDER Fonds Européens de Développement Régional (23000816 SRESRI 2015), the CPER contrat de plan État-région (23000892 SYMBIOSE 2016) and AgreenSkills fellowship (applicant ID 4146).