1. Time-course of oral toxicity to contaminated groundwater in male Sprague Dawley rats
- Author
-
Bright Boamah, Steven Siciliano, Natacha Hogan, Markus Hecker, Mark Hanson, Patrick Campbell, Rachel Peters, Ahmad N. Al-Dissi, and Lynn Weber
- Subjects
Complex mixture ,Target organ ,Time course ,Effects directed toxicity testing ,Toxicology. Poisons ,RA1190-1270 - Abstract
Assessing toxicity of complex mixtures of contaminants from industrial sites with historic and ongoing contamination remains a challenge for risk assessors. Groundwater from a pesticide packaging site in Canada containing a complex mixture of known and unknown contaminants was examined in male rats to determine the target organ toxicity. This study determined the time-course of toxicity (7, 14, 28, and 60 days) following ad libitum oral exposure to 0.05% v/v contaminated groundwater compared to tap water (control) in male Sprague Dawley rats (n=5 /group/time). Exposure to groundwater resulted in inflammation, indicated by a statistically significant increase in plasma lymphocyte and neutrophil counts on days 7 and 60, respectively, but a reduction in the plasma alpha 2 macroglobulin levels by day 60. Gonadotoxicity was indicated by a reduced Johnsen score (grading spermatogenesis) in all exposed groups at all time points, while seminiferous epithelial height was reduced on days 7, 14, and 28 compared to controls. Plasma testosterone was reduced in exposed groups on days 7 and 28, accompanied by elevated testicular lipid peroxidation at all time points compared to control. In contrast, lipid peroxidation in the lungs from exposed rats was elevated on days 7, 14, and 28. Plasma symmetric dimethylarginine was elevated on day 14 in the exposed group indicating renal impairment. Taken together, these results indicate that testes, kidney, immune and lung are target organs for the contaminated groundwater from this industrial site. The current study highlights the challenge in hazard assessment for complex mixtures and highlights the need for effects-directed analysis and the continued, albeit limited, use of animal models in toxicity testing.
- Published
- 2024
- Full Text
- View/download PDF