1. Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis.
- Author
-
Wang H, Li X, Kajikawa T, Shin J, Lim JH, Kourtzelis I, Nagai K, Korostoff JM, Grossklaus S, Naumann R, Chavakis T, and Hajishengallis G
- Subjects
- Animals, Cell Differentiation, Female, Germinal Center immunology, Lymphocyte Function-Associated Antigen-1 physiology, Male, Mice, Mice, Inbred C57BL, Stromal Cells chemistry, T Follicular Helper Cells cytology, Arthritis, Experimental prevention & control, Calcium-Binding Proteins physiology, Cell Adhesion Molecules physiology, Lymphocyte Activation, T Follicular Helper Cells immunology
- Abstract
The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.
- Published
- 2021
- Full Text
- View/download PDF