190 results on '"Luthcke, S."'
Search Results
2. Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
- Author
-
Waldron, Z. C., primary, Garcia‐Sage, K., additional, Thayer, J. P., additional, Sutton, E. K., additional, Ray, V., additional, Rowlands, D. D., additional, Lemoine, F. G., additional, Luthcke, S. B., additional, Kuznetsova, M., additional, Ringuette, R., additional, Rastaetter, L., additional, and Berland, G. D., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Regularization and error characterization of GRACE mascons
- Author
-
Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.
- Published
- 2019
- Full Text
- View/download PDF
4. On Computation of Potential, Gravity and Gravity Gradient from GRACE Inter-Satellite Ranging Data: A Systematic Study
- Author
-
Ghobadi-Far, K., primary, Han, S.-C., additional, Loomis, B. D., additional, and Luthcke, S. B., additional
- Published
- 2018
- Full Text
- View/download PDF
5. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise
- Author
-
Loomis, B. D, Rachlin, K. E, and Luthcke, S. B
- Subjects
Oceanography - Abstract
Satellite laser ranging (SLR) observations are routinely applied toward the estimation of dynamic oblateness, C(sub 20), which is the largest globally integrated component of Earth's time-variable gravity field. Since 2002, GRACE and GRACE Follow-On have revolutionized the recovery of higher spatial resolution features of global time-variable gravity, with SLR continuing to provide the most reliable estimates of C (sub 20).We quantify the effect of various SLR processing strategies on estimating C(sub 20) and demonstrate better signal recovery with the inclusion of GRACE-derived low-degree gravity information in the forward model. This improved SLR product modifies the Antarctic and Greenland Ice Sheet mass trends by -15.4 and -3.5 Gt/year, respectively, as compared to CSR TN11, and improves global mean sea level budget closure by modifying sea level rise by +0.08 mm/year. We recommend that this new C(sub 20) product be applied to RL06 GRACE data products for enhanced accuracy and scientific interpretation.
- Published
- 2019
- Full Text
- View/download PDF
6. Mass evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and altimetry: accuracy assessment and solution calibration
- Author
-
Loomis, B. D. and Luthcke, S. B.
- Published
- 2017
- Full Text
- View/download PDF
7. The use of mascons to resolve time-variable gravity from GRACE
- Author
-
Lemoine, F. G., Luthcke, S. B., Rowlands, D. D., Chinn, D. S., Klosko, S. M., Cox, C. M., Sansò, Fernando, editor, Tregoning, Paul, editor, and Rizos, Chris, editor
- Published
- 2007
- Full Text
- View/download PDF
8. The Mass Change Designated Observable Study: Overview and Results
- Author
-
Wiese, D. N., primary, Bienstock, B., additional, Blackwood, C., additional, Chrone, J., additional, Loomis, B. D., additional, Sauber, J., additional, Rodell, M., additional, Baize, R., additional, Bearden, D., additional, Case, K., additional, Horner, S., additional, Luthcke, S., additional, Reager, J. T., additional, Srinivasan, M., additional, Tsaoussi, L., additional, Webb, F., additional, Whitehurst, A., additional, and Zlotnicki, V., additional
- Published
- 2022
- Full Text
- View/download PDF
9. Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error
- Author
-
Montesano, P.M., Cook, B.D., Sun, G., Simard, M., Nelson, R.F., Ranson, K.J., Zhang, Z., and Luthcke, S.
- Published
- 2013
- Full Text
- View/download PDF
10. Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
- Author
-
Duncanson, L, Duncanson, L, Kellner, JR, Armston, J, Dubayah, R, Minor, DM, Hancock, S, Healey, SP, Patterson, PL, Saarela, S, Marselis, S, Silva, CE, Bruening, J, Goetz, SJ, Tang, H, Hofton, M, Blair, B, Luthcke, S, Fatoyinbo, L, Abernethy, K, Alonso, A, Andersen, HE, Aplin, P, Baker, TR, Barbier, N, Bastin, JF, Biber, P, Boeckx, P, Bogaert, J, Boschetti, L, Boucher, PB, Boyd, DS, Burslem, DFRP, Calvo-Rodriguez, S, Chave, J, Chazdon, RL, Clark, DB, Clark, DA, Cohen, WB, Coomes, DA, Corona, P, Cushman, KC, Cutler, MEJ, Dalling, JW, Dalponte, M, Dash, J, de-Miguel, S, Deng, S, Ellis, PW, Erasmus, B, Fekety, PA, Fernandez-Landa, A, Ferraz, A, Fischer, R, Fisher, AG, García-Abril, A, Gobakken, T, Hacker, JM, Heurich, M, Hill, RA, Hopkinson, C, Huang, H, Hubbell, SP, Hudak, AT, Huth, A, Imbach, B, Jeffery, KJ, Katoh, M, Kearsley, E, Kenfack, D, Kljun, N, Knapp, N, Král, K, Krůček, M, Labrière, N, Lewis, SL, Longo, M, Lucas, RM, Main, R, Manzanera, JA, Martínez, RV, Mathieu, R, Memiaghe, H, Meyer, V, Mendoza, AM, Monerris, A, Montesano, P, Morsdorf, F, Næsset, E, Naidoo, L, Nilus, R, O'Brien, M, Orwig, DA, Papathanassiou, K, Parker, G, Philipson, C, Phillips, OL, Pisek, J, Poulsen, JR, Pretzsch, H, Rüdiger, C, Duncanson, L, Duncanson, L, Kellner, JR, Armston, J, Dubayah, R, Minor, DM, Hancock, S, Healey, SP, Patterson, PL, Saarela, S, Marselis, S, Silva, CE, Bruening, J, Goetz, SJ, Tang, H, Hofton, M, Blair, B, Luthcke, S, Fatoyinbo, L, Abernethy, K, Alonso, A, Andersen, HE, Aplin, P, Baker, TR, Barbier, N, Bastin, JF, Biber, P, Boeckx, P, Bogaert, J, Boschetti, L, Boucher, PB, Boyd, DS, Burslem, DFRP, Calvo-Rodriguez, S, Chave, J, Chazdon, RL, Clark, DB, Clark, DA, Cohen, WB, Coomes, DA, Corona, P, Cushman, KC, Cutler, MEJ, Dalling, JW, Dalponte, M, Dash, J, de-Miguel, S, Deng, S, Ellis, PW, Erasmus, B, Fekety, PA, Fernandez-Landa, A, Ferraz, A, Fischer, R, Fisher, AG, García-Abril, A, Gobakken, T, Hacker, JM, Heurich, M, Hill, RA, Hopkinson, C, Huang, H, Hubbell, SP, Hudak, AT, Huth, A, Imbach, B, Jeffery, KJ, Katoh, M, Kearsley, E, Kenfack, D, Kljun, N, Knapp, N, Král, K, Krůček, M, Labrière, N, Lewis, SL, Longo, M, Lucas, RM, Main, R, Manzanera, JA, Martínez, RV, Mathieu, R, Memiaghe, H, Meyer, V, Mendoza, AM, Monerris, A, Montesano, P, Morsdorf, F, Næsset, E, Naidoo, L, Nilus, R, O'Brien, M, Orwig, DA, Papathanassiou, K, Parker, G, Philipson, C, Phillips, OL, Pisek, J, Poulsen, JR, Pretzsch, H, and Rüdiger, C
- Abstract
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AG
- Published
- 2022
11. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
- Author
-
Duncanson, L., Kellner, J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., Patterson, P.L., Saarela, S., Marselis, S., Silva, C.E., Bruening, J., Goetz, S.J., Tang, H., Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., Alonso, A., Andersen, H.-E., Aplin, P., Baker, T.R., Barbier, N., Bastin, J.F., Biber, P., Boeckx, P., Bogaert, J., Boschetti, L., Brehm Boucher, P., Boyd, D.S., Burslem, D.F.R.P., Calvo-Rodriguez, S., Chave, J., Chazdon, R.L., Clark, D.B., Clark, D.A., Cohen, W.B., Coomes, D.A., Corona, P., Cushman, K.C., Cutler, M.E.J., Dalling, J.W., Dalponte, M., Dash, J., de-Miguel, S., Deng, S., Jeffery, K.J., Katoh, M., Kearsley, E., Kenfack, D., Kljun, N., Knapp, Nikolai, Král, K., Krůček, M., Labrière, N., Lewis, S.L., Longo, M., Lucas, R.M., Main, R., Manzanera, J.A., Vásquez Martínez, R., Mathieu, R., Memiaghe, H., Meyer, V., Monteagudo Mendoza, A., Monerris, A., Montesano, P., Morsdorf, F., Næsset, E., Naidoo, L., Nilus, R., O’Brien, M., Orwig, D.A., Papathanassiou, K., Parker, G., Philipson, C., Phillips, O.L., Pisek, J., Poulsen, J.R., Pretzsch, H., Rüdiger, C., Saatchi, S., Sanchez-Azofeifa, A., Sanchez-Lopez, N., Scholes, R., Silva, C.A., Simard, M., Skidmore, A., Stereńczak, K., Tanase, M., Torresan, C., Valbuena, R., Verbeeck, H., Vrska, T., Wessels, K., White, J.C., White, L.J.T., Zahabu, E., Zgraggen, C., Duncanson, L., Kellner, J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., Patterson, P.L., Saarela, S., Marselis, S., Silva, C.E., Bruening, J., Goetz, S.J., Tang, H., Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., Alonso, A., Andersen, H.-E., Aplin, P., Baker, T.R., Barbier, N., Bastin, J.F., Biber, P., Boeckx, P., Bogaert, J., Boschetti, L., Brehm Boucher, P., Boyd, D.S., Burslem, D.F.R.P., Calvo-Rodriguez, S., Chave, J., Chazdon, R.L., Clark, D.B., Clark, D.A., Cohen, W.B., Coomes, D.A., Corona, P., Cushman, K.C., Cutler, M.E.J., Dalling, J.W., Dalponte, M., Dash, J., de-Miguel, S., Deng, S., Jeffery, K.J., Katoh, M., Kearsley, E., Kenfack, D., Kljun, N., Knapp, Nikolai, Král, K., Krůček, M., Labrière, N., Lewis, S.L., Longo, M., Lucas, R.M., Main, R., Manzanera, J.A., Vásquez Martínez, R., Mathieu, R., Memiaghe, H., Meyer, V., Monteagudo Mendoza, A., Monerris, A., Montesano, P., Morsdorf, F., Næsset, E., Naidoo, L., Nilus, R., O’Brien, M., Orwig, D.A., Papathanassiou, K., Parker, G., Philipson, C., Phillips, O.L., Pisek, J., Poulsen, J.R., Pretzsch, H., Rüdiger, C., Saatchi, S., Sanchez-Azofeifa, A., Sanchez-Lopez, N., Scholes, R., Silva, C.A., Simard, M., Skidmore, A., Stereńczak, K., Tanase, M., Torresan, C., Valbuena, R., Verbeeck, H., Vrska, T., Wessels, K., White, J.C., White, L.J.T., Zahabu, E., and Zgraggen, C.
- Abstract
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AG
- Published
- 2022
12. Correction to: Regularization and error characterization of GRACE mascons
- Author
-
Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.
- Published
- 2019
- Full Text
- View/download PDF
13. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences
- Author
-
Rakholia, A, Sugarbaker, A, Black, A, Kasecivh, M, Saif, B, Luthcke, S, Callahan, L, Seery, B, Feinberg, L, Mather, J, and Keski-Kuha, R
- Subjects
Astrophysics - Abstract
We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.
- Published
- 2017
14. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations
- Author
-
Luthcke, S. B., Zwally, H. J., Abdalati, W., Rowlands, D. D., Ray, R. D., Nerem, R. S., Lemoine, F. G., McCarthy, J. J., and Chinn, D. S.
- Published
- 2006
- Full Text
- View/download PDF
15. Mass Evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and Altimetry: Accuracy Assessment and Solution Calibration
- Author
-
Loomis, B. D and Luthcke, S. B
- Subjects
Geosciences (General) - Abstract
We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.
- Published
- 2016
- Full Text
- View/download PDF
16. Simulation study of a follow-on gravity mission to GRACE
- Author
-
Loomis, Bryant D., Nerem, R. S., and Luthcke, S. B.
- Published
- 2012
- Full Text
- View/download PDF
17. Evaluation and validation of mascon recovery using GRACE KBRR data with independent mass flux estimates in the Mississippi Basin
- Author
-
Klosko, S., Rowlands, D., Luthcke, S., Lemoine, F., Chinn, D., and Rodell, M.
- Published
- 2009
- Full Text
- View/download PDF
18. A simulation study of multi-beam altimetry for lunar reconnaissance orbiter and other planetary missions
- Author
-
Rowlands, D. D., Lemoine, F. G., Chinn, D. S., and Luthcke, S. B.
- Published
- 2009
- Full Text
- View/download PDF
19. ICESat‐2 Constraint Analysis and Monitoring System (CAMS)
- Author
-
Rebold, T. W., primary, Luthcke, S. B., additional, Pennington, T. A., additional, Syed, A., additional, Beall, J. L., additional, and Sabaka, T. J., additional
- Published
- 2021
- Full Text
- View/download PDF
20. ICESat‐2 Precision Orbit Determination
- Author
-
Thomas, T. C., primary, Luthcke, S. B., additional, Pennington, T. A., additional, Nicholas, J. B., additional, and Rowlands, D. D., additional
- Published
- 2021
- Full Text
- View/download PDF
21. ICESat‐2 Pointing Calibration and Geolocation Performance
- Author
-
Luthcke, S. B., primary, Thomas, T. C., additional, Pennington, T. A., additional, Rebold, T. W., additional, Nicholas, J. B., additional, Rowlands, D. D., additional, Gardner, A. S., additional, and Bae, S., additional
- Published
- 2021
- Full Text
- View/download PDF
22. An Iterated Global Mascon Solution with Focus on Land Ice Mass Evolution
- Author
-
Luthcke, S. B, Sabaka, T, Rowlands, D. D, Lemoine, F. G, Loomis, B. D, and Boy, J. P
- Subjects
Geophysics - Abstract
Land ice mass evolution is determined from a new GRACE global mascon solution. The solution is estimated directly from the reduction of the inter-satellite K-band range rate observations taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons are estimated with 10-day and 1-arc-degree equal area sampling, applying anisotropic constraints for enhanced temporal and spatial resolution of the recovered land ice signal. The details of the solution are presented including error and resolution analysis. An Ensemble Empirical Mode Decomposition (EEMD) adaptive filter is applied to the mascon solution time series to compute timing of balance seasons and annual mass balances. The details and causes of the spatial and temporal variability of the land ice regions studied are discussed.
- Published
- 2012
23. The Effect of Geocenter Motion on Jason-2 Orbits and the Mean Sea Level
- Author
-
Melachroinos, S. A, Lemoine, F. G, Zelensky, N. P, Rowlands, D. D, Luthcke, S. B, and Bordyugov, O
- Subjects
Geosciences (General) - Abstract
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al. 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a 4.67 plus or minus 3.40 mm error in the Z-component of the orbit frame which creates 1.06 plus or minus 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.
- Published
- 2012
24. A New Global Mascon Solution Tuned for High-Latitude Ice Studies
- Author
-
Luthcke, S. B, Sabaka, T, Rowlands, D. D, McCarthy, J. J, and Loomis, B
- Subjects
Geophysics - Abstract
A new global mascon solution has been developed with I-arc-degree spatial and IO-day temporal sampling. The global mas cons are estimated from the reduction of nearly 8 years of GRACE K-band range-rate data. Temporal and anisotropic spatial constraints have been applied for land, ocean and ice regions. The solution construction and tuning is focused towards the Greenland and Antarctic ice sheets (GIS and AIS) as well as the Gulf of Alaska mountain glaciers (GoA). Details of the solution development will be discussed, including the mascon parameter definitions, constraints, and the tuning of the constraint damping factor. Results will be presented, exploring the spatial and temporal variability of the ice sheets and GoA regions. A detailed error analysis will be discussed, including solution dependence on iteration, damping factor, forward modeling, and multitechnique comparisons. We also investigate the fundamental resolution of the solution and the spatial correlation of ice sheet inter-annual change. Finally, we discuss future improvements, including specific constraint application for the rest of the major land ice regions and improvements in solution regularization.
- Published
- 2011
25. Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
- Author
-
Boy, J.-P, Rowlands, D. D, Sabaka, T. J, Luthcke, S. B, and Lemoine, F. G
- Subjects
Oceanography - Abstract
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
- Published
- 2011
26. Enhanced Radiative Force Modeling of the Tracking and Data Relay Satellites
- Author
-
Luthcke, S. B., Marshall, J. A., Rowton, S. C., Rachlin, K. E., Cox, C. M., and Williamson, R. G.
- Published
- 1997
- Full Text
- View/download PDF
27. Space Shuttle Precision Orbit Determination in Support of SLA-1 Using TDRSS and GPS Tracking Data
- Author
-
Rowlands, D. D., Luthcke, S. B., Marshall, J. A., Cox, C. M., Williamson, R. G., and Rowton, S. C.
- Published
- 1997
- Full Text
- View/download PDF
28. Improving Global Mass Flux Solutions from Gravity Recovery and Climate Experiment (GRACE) Through Forward Modeling and Continuous Time Correlation
- Author
-
Sabaka, T. J, Rowlands, D. D, Luthcke, S. B, and Boy, J.-P
- Subjects
Geophysics - Abstract
We describe Earth's mass flux from April 2003 through November 2008 by deriving a time series of mas cons on a global 2deg x 2deg equal-area grid at 10 day intervals. We estimate the mass flux directly from K band range rate (KBRR) data provided by the Gravity Recovery and Climate Experiment (GRACE) mission. Using regularized least squares, we take into account the underlying process dynamics through continuous space and time-correlated constraints. In addition, we place the mascon approach in the context of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric filtering, least squares collocation, and Kalman smoothing. We produce mascon time series from KBRR data that have and have not been corrected (forward modeled) for hydrological processes and fmd that the former produce superior results in oceanic areas by minimizing signal leakage from strong sources on land. By exploiting the structure of the spatiotemporal constraints, we are able to use a much more efficient (in storage and computation) inversion algorithm based upon the conjugate gradient method. This allows us to apply continuous rather than piecewise continuous time-correlated constraints, which we show via global maps and comparisons with ocean-bottom pressure gauges, to produce time series with reduced random variance and full systematic signal. Finally, we present a preferred global model, a hybrid whose oceanic portions are derived using forward modeling of hydrology but whose land portions are not, and thus represent a pure GRACE-derived signal.
- Published
- 2010
- Full Text
- View/download PDF
29. Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies - Mass Concentrations Versus Stokes Coefficients
- Author
-
Rowlands, D. D, Luthcke, S. B, McCarthy J. J, Klosko, S. M, Chinn, D. S, Lemoine, F. G, Boy, J.-P, and Sabaka, T. J
- Subjects
Geophysics - Abstract
The differences between mass concentration (mas con) parameters and standard Stokes coefficient parameters in the recovery of gravity infonnation from gravity recovery and climate experiment (GRACE) intersatellite K-band range rate data are investigated. First, mascons are decomposed into their Stokes coefficient representations to gauge the range of solutions available using each of the two types of parameters. Next, a direct comparison is made between two time series of unconstrained gravity solutions, one based on a set of global equal area mascon parameters (equivalent to 4deg x 4deg at the equator), and the other based on standard Stokes coefficients with each time series using the same fundamental processing of the GRACE tracking data. It is shown that in unconstrained solutions, the type of gravity parameter being estimated does not qualitatively affect the estimated gravity field. It is also shown that many of the differences in mass flux derivations from GRACE gravity solutions arise from the type of smoothing being used and that the type of smoothing that can be embedded in mas con solutions has distinct advantages over postsolution smoothing. Finally, a 1 year time series based on global 2deg equal area mascons estimated every 10 days is presented.
- Published
- 2010
- Full Text
- View/download PDF
30. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy
- Author
-
Lemoine, F. G, Zelensky, N. P, Luthcke, S. B, Rowlands, D. D, Beckley, B. D, and Klosko, S. M
- Subjects
Earth Resources And Remote Sensing - Abstract
Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.
- Published
- 2006
31. The Relationship Between Global Mean Sea Level Rise and the Reference Frame
- Author
-
Lemoine, F, Luthcke, S, Zelensky, N, Pavlis, E, Beckley, B, Ray, R, Petrov, L, Pavlis, D, and Rowlands, D
- Subjects
Geophysics - Abstract
The Terrestrial Reference Frame is the fundamental means by which we relate observations in space and time. For example, in order to generate a homogeneous and consistent time series of geo-referenced altimeter measurements over the span of the Topex/Poseidon and Jason-1 missions, we must examine carefully the role of improvements in measurement modelling, force modelling, and improved reference frame realizations. In this paper, we quantify the effects of improvements in force modelling, for example the use of new GRACE-derived gravity models, the effect of time-variable gravity derived from GRACE on altimeter satellite orbits. In addition, we examine the effects of modelling geocenter in altimeteric satellite POD, and look at how the application of atmospheric loading might affect the time-series of precise orbits for Topex/Poseidon and Jason-1.
- Published
- 2006
32. ICESat Observations of Topographic Change in the Northern Segment of the 2004 Sumatra-Andaman Islands Earthquake Rupture Zone
- Author
-
Harding, David, Sauber, J, Luthcke, S, Carabajal, C, and Muller, J
- Subjects
Geophysics - Abstract
The Andaman Islands are located 120 km east of the Sunda trench in the northern quarter of the 1300 km long rupture zone of the 2004 Sumatra-Andaman Islands earthquake inferred from the distribution of aftershocks. Initial field reports indicate that several meters of uplift and up to a meter of submergence occurred on the western and eastern shorelines of the Andaman Islands, respectively, associated with the earthquake (Bilham, 2005). Satellite images also document uplift of western shoreline coral reef platforms above sea level. Body-wave (Ji, 2005; Yamamaka, 2005) and tide-gauge (Ortiz, 2005) slip inversions only resolve coseismic slip in the southern one-third to one-half of the rupture zone. The amount of coseismic slip in the Andaman Islands region is poorly constrained by these inversions. The Ice, Cloud, and land Elevation Satellite (ICESat), a part of the NASA Earth Observing System, is being used to document the spatial pattern of Andaman Islands vertical displacements in order to constrain models of slip distribution in the northern part of the rupture zone. ICESat carries the Geoscience Laser Altimeter System (GLAS) that obtains elevation measurements from 80 m diameter footprints spaced 175 m apart along profiles. For surfaces of low slope, single-footprint absolute elevation and horizontal accuracies of 10 cm and 6 m (1 sigma), respectively, referenced to the ITRF 2002 TOPEX/Poseidon ellipsoid are being obtained. Laser pulse backscatter waveforms enable separation of ground topography and overlying vegetation cover. During each 33-day observing period ICESat acquires three profiles crossing the Andaman Islands. A NNE-SSW oriented track consists of 1600 laser footprints along the western side of North, Middle, and South Andaman Islands and 240 laser footprints across the center of Great Andaman Island. Two NNW-SSE tracks consist of 440 footprints across Middle Andaman Island and 25 footprints across the west side of Sentinel Island. Cloud-free profiles were acquired in the fall of 2003 and 2004. During February-March, 2005 ICESat's precise pointing capability will be used to exactly repeat these three profiles, with a cross-track accuracy of better than 100 m, providing trench- parallel and -perpendicular observations of topographic change of the Andaman Islands that will compliment geodetic field surveys. The observed elevation changes will be compared to models of coseismic deformation associated with the mainshock and large aftershocks in the Andaman Islands region.
- Published
- 2005
33. The Use of Mascons to Resolve Time-Variable Gravity from GRACE
- Author
-
Lemoine, Frank G, Luthcke, S. B, Rowlands, D. D, Klosko, S. M, Cox, C. M, and Chinn, D. S
- Subjects
Numerical Analysis - Abstract
We have analyzed GRACE Level 1B data to resolve time-variable gravity using a local mascon approach. The spherical harmonic solutions released to date resolve the signal from surface hydrology over land areas at spatial scales of 750 to 1000 km over one month intervals [Wahr et al., 2004; Tapley et al., 2004]. In our local approach, we solve explicitly for the mass of water in surface blocks using only the KBRR data collected as GRACE overflies the region of interest. The local representation of gravity minimizes leakage of errors from other areas due to aliasing or mismodelling. In this paper, we report on the analysis of GRACE data from January 2003 through August 2004 over three regions: the Amazon, the Indian subcontinent, and the continental United States. We solve for mass change at 10-day intervals using 4 deg x 4 deg blocks. We give an overview of our latest results, and we present the results of error analyses, and comparisons to both hydrology models and in-situ data.
- Published
- 2005
34. Elevation change (2000-2004) on the Malaspina Glacier, Alaska
- Author
-
Sauber, J, Molnia, B, Carabajal, C, Luthcke, S, and Muskett, R
- Subjects
Earth Resources And Remote Sensing - Abstract
The glaciers of the southeastern Alaska coastal region are the largest temperate glacier meltwater source on Earth and may contribute one third of the total glacier meltwater entering the global ocean. Since melt onset and refreeeze timing in this region show a tendency toward earlier onset and longer ablation seasons, accelerated glacier wastage may be occurring. In this study we focus on one of the largest temperate glacier systems on Earth, the Malaspina Glacier. This glacier, with a length of approximately 110 km and an area of approximately square 5,000 km, has the largest piedmont lobe of any temperate glacier. The entire lobe, which lies at elevations below 600 m, is within the ablation zone. We report and interpret ice elevation change between a digital elevation model (DEM) derived from the Shuttle Radar Topography Mission (SRTM C band) observations in Feb. 2000 and ICESat Laser 1-3 observations between Feb. 2003 and Nov. 2004. We use these elevation change results, along with earlier studies, to address the spatial and temporal variability in wastage of the piedmont lobe. Between 2000 and 2004 ice elevation changes of 10-30 meters occurred across the central Malaspina piedmont lobe. From 1972/73 (USGS DEM) to 1999 (SRTM corrected for estimated winter snow accumulation) Malaspina's (Agassiz, Seward Lobe, and Marvine) mean ice thinning was estimated at -47 m with maximum thinning on parts of the lobes to -160 m. The Malaspina's accumulation area is only slightly larger than its ablation area (2,575 km2 vs. 2,433 km2); unfortunately few glaciological observations are available from this source region. Snow accumulation rates have been largely inferred from low-altitude precipitation and temperature data. Comparing sequential ICESat observations in the Malaspina source region, we estimated short-term elevation increases of up to 5 meters during the winter of 2003/04.
- Published
- 2005
35. Unique Approaches to Analysis of Time-Variable Gravity from GRACE
- Author
-
Lemoine, Frank G, Luthcke, S. B, Rowlands, D. D, Cox, C. M, Kloska, S. M, and Chinn, D. S
- Subjects
Numerical Analysis - Abstract
We have developed an innovative analysis strategy for analysis of GRACE data. We have developed a capability to recover local/regional gravity changes using non-global functional representations (Le. surface anomalies vs. global spherical harmonics) h m the GRACE data. Our approach can take regularly or irregularly shaped regions, populate them with surface anomaly blocks of suitable area and solve for the resulting mass flux with respect to a mean field. The surface mass or gravity anomalies benefit from the application of spatial and temporal constraints to add stability to the solution. In this paper we discuss the analysis of four months of GRACE Level 1B data (accelerometry, intersatellite data, attitude information and precise orbits) from July to October 2003, recently released to the GRACE Science Team. We compare and contrast this local approach to gravity recovery, with the more conventional approach using global spherical harmonics. We review simulations of this technique which allow us to pinpoint optimum strategies for applications of this local gravity recovery approach.
- Published
- 2004
36. An Evaluation of Recent Gravity Models wrt. Altimeter Satellite Missions
- Author
-
Lemoine, Frank G, Zelensky, N. P, Luthcke, S. B, Beckley, B. D, Chinn, D. S, and Rowlands, D. D
- Subjects
Earth Resources And Remote Sensing - Abstract
With the launch of CHAMP and GRACE, we have entered a new phase in the history of satellite geodesy. For the first time, geopotential models are now available based almost exclusively on satellite-satellite tracking either with GPS in the case of the CHAMP-based geopotential models, or co-orbital intersatellite ultra-precise ranging in the case of GRACE. Different groups have analyzed these data, and produced a series of geopotential models (e.g., EIGENlS, EIGEN2, GGM0lS, GGMOlC) that incorporate the new data. We will compare the performance of these "newer" geopotential models with the standard models now used for computations, (e.g., JGM-3, BGM-96, PGS7727, and GRIMS-C1) for TOPEX, JASON, Geosat-Follow-On (GFO), and Envisat using standard metrics such as SLR RMS of fit, altimeter crossovers, and orbit overlaps. Where covariances are available we can evaluate the predicted geographically correlated orbit error. These predicted results can be compared with the Earth-fixed differences between dynamic and reduced-dynamic orbits to test the predictive accuracy of the covariances, as well as to calibrate the error of the solutions.
- Published
- 2003
37. IMPROVEMENTS IN SPACEBORNE LASER ALTIMETER DATA GEOLOCATION
- Author
-
Luthcke, S. B., carabajal, C. C., Rowlands, D. D., and Pavlis, D. E.
- Published
- 2001
38. CHAMP Tracking and Accelerometer Data Analysis Results
- Author
-
Lemoine, Frank G, Luthcke, S. B, Rowlands, D. D, Pavlis, D. E, Colombo, O. L, Ray, Richard D, Thompson, B, Nerem, R. S, Williams, Teresa A, and Smith, David E
- Subjects
Geophysics - Abstract
The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.
- Published
- 2002
39. Gravity Fields from CHAMP Mission Data
- Author
-
Lemoine, Frank G, Luthcke, S. B, Cox, C. M, Rowlands, D. D, Thompson, B. F, Chinn, D. S, Williams, T. A, and Nerem, R. S
- Subjects
Geophysics - Abstract
The CHAMP mission, launched in July 2000, is the first in a series of missions that will revolutionize our ability to model the Earth s geopotential. The CHAMP spacecraft is equipped for precision tracking by the Global Positioning System (GPS) and Satellite Laser Ranging (SLR) along with a precision accelerometer to provide measurements of the surface forces. Preliminary satellite-only geopotential solutions with only 30 days of CHAMP data are, by some criteria, as strong as solutions made from tracking data collected over the previous 30 years of the space age. Compared to EGM96, CHAMP makes notable contributions in regions where the terrestrial data (surface gravimetry and altimetry) were weak, for example in the polar regions, in the Amazon and the Himalayas. The CHAMP data allow us to separate the geoid from the dynamic ocean topography (DOT) up to at least degree 25 rather than just under degree 20 as in EGM96. We report on satellite-only and combination models that incorporate up to 100 days of CHAMP data as well as other satellite data. We report on our updated processing of the CHAMP tracking and accelerometer data and evaluate the performance of the geopotential models using a variety of tests.
- Published
- 2002
40. JASON-1 Precise Orbit Determination (POD)with SLR and DORIS Tracking
- Author
-
Zelensky, N. P, Luthcke, S. B, Rowlands, D. D, Beckley, B. D, Lemoine, Frank G, Wang, Y. M, Chinn, D. S, and Williams, T. A
- Subjects
Optics - Abstract
Jason-1, the TOPEX/POSEIDON (T/P) radar altimeter follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits based on SLR and DORIS tracking. For verification and cross-calibration, Jason-1, was initially injected into the T/P orbit, flying just 72 seconds ahead of T/P. This configuration lasted over 21 Jason cycles. In mid-August T/P was maneuvered into its final tandem configuration, a parallel groundtrack, in order to improve the combined coverage. Preliminary investigations using cycles 1-9, shown at the June 2002 SWT, indicated that nominal Jason orbits can achieve the 2-3 cm accuracy objective, however several puzzling aspects of SLR and DORIS measurement modeling were also observed. This paper presents recent analysis of Jason SLR+DORIS POD spanning more than 20 cycles, and revisits several of the more puzzling issues, including estimation of the Laser Retroreflector Array (LRA) offset. The accuracy of the orbits and of the measurement modeling are evaluated using several tests, including SLR, DORIS, and altimeter crossover residual analysis, altimeter collinear analysis, and direct comparison with GPS and other orbits. T/P POD results over the same period are used as a reference.
- Published
- 2002
41. Recent Results from CHAMP Tracking and Accelerometer Data Analysis
- Author
-
Luthcke, S. B, Rowlands, D. D, Lemoine, F. G, Nerem, R. S, Thompson, B, Pavlis, E, Williams, T. A, Colombo, O. L, and Chao, Benjamin F
- Subjects
Geophysics - Abstract
The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.
- Published
- 2002
42. An Assessment of Gravity Recovery with CHAMP Data
- Author
-
Lemoine, F. G, Luthcke, S. B, Rowlands, D. D, Cox, C. M, Chinn, D. S, Pavlis, D. E, Thompson, B, Nerem, R. S, Ray, R, and Chao, Benjamin F
- Subjects
Geophysics - Abstract
The CHAMP mission, launched in July 2000, is the first in the series of mapping missions for the Earth's geopotential scheduled for the first decade of the new millenium. Its unique contributions compared to all the previous generation of satellites whose data have been included in Earth geopotential models are the precision global tracking with GPS data, and the availability of precision accelerometry data to model the nonconservative forces. Over the past year we have implemented extensive modifications to our GEODYN orbit determination processing code and ancillary data preprocessors to process the GPS and accelerometry data from missions such as CHAMP and GRACE. We report on the analysis of up to 60 days of CHAMP data and how these data contribute to Earth geopotential solutions where the base model is a derivative of EGM96. Preliminary results with only 12.5 days of data processed clearly show the ability of the CHAMP data to improve the modeling of the zonals (1=10 to 40), the m-dailies, the primary resonance terms, and the sectoral harmonics. We will detail the results of our calibrations of the CHAMP accelerometry and assess the quality of test solutions that include these CHAMP data.
- Published
- 2002
43. JASON-1 Precise Orbit Determination (POD) Through the Combination and Comparison of GPS, SLR, DORIS and Altimeter Crossover Data
- Author
-
Luthcke, S. B, Zelensky, N. P, Lemoine, Frank G, Chinn, D. S, and Williams, T. A
- Subjects
Spacecraft Design, Testing And Performance - Abstract
Jason-1, launched on December 7, 2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical component to meeting the ocean topography goals of the mission. T/P has demonstrated that the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits based primarily on SLR+DORIS tracking. The Jason-1 mission is intended to continue measurement of the ocean surface with the same, if not better accuracy. Fortunately, Jason-1 POD can rely on four independent tracking data types available including near continuous tracking data from the dual frequency codeless BlackJack GPS receiver. Orbit solutions computed using individual and various combinations of GPS, SLR, DORIS and altimeter crossover data types have been determined from over 100 days of Jason-1 tracking data. The performance of the orbit solutions and tracking data has been evaluated. Orbit solution evaluation and comparison has provided insight into possible areas of refinement. Several aspects of the POD process are examined to obtain orbit improvements including measurement modeling, force modeling and solution strategy. The results of these analyses will be presented.
- Published
- 2002
44. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers
- Author
-
Lemoine, F. G, Rowlands, D. D, Luthcke, S. B, Zelensky, N. P, Chinn, D. S, Pavlis, D. E, and Marr, G. C
- Subjects
Space Communications, Spacecraft Communications, Command And Tracking - Abstract
The U.S. Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler (Tranet-style) beacons. Although a limited amount of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We have tuned the nonconservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data spanning over one year. Preliminary results show that the predicted radial orbit error from the gravity field covariance to 70x70 on GEOSAT was reduced from 2.6 cm in EGM96 to 1.9 cm with the addition of only five months of the GFO SLR and GFO/GFO crossover data. Further progress is possible with the addition of more data, particularly the TOPEX/GFO crossovers. We will evaluate the tuned GFO gravity model (a derivative of EGM96) using altimeter data from the GEOSAT mission. In January 2000, a limited quantity of GPS data were obtained. We will use these GPS data in conjunction with the SLR and altimeter crossover data obtained over the same time span to compute quasi-reduced dynamic orbits which will also aid in the evaluation of the tuned GFO geopotential model.
- Published
- 2001
45. State of the climate in 2017
- Author
-
Abernethy, R., Ackerman, Steven A., Adler, R., Albanil Encarnación, Adelina, Aldeco, Laura S., Alfaro, Eric J., Aliaga-Nestares, Vannia, Allan, Richard P., Allan, Rob, Alves, Lincoln M., Amador, Jorge A., Anderson, John, Andreassen, L. M., Argüez, Anthony, Armitage, C., Arndt, Derek S., Avalos, Grinia, Azorin-Molina, César, Báez, Julián, Bardin, M. Yu, Barichivich, Jonathan, Baringer, Molly O., Barreira, Sandra, Baxter, Stephen, Beck, H. E., Becker, Andreas, Bedka, Kristopher M., Behe, Carolina, Bell, Gerald D., Bellouin, Nicolas, Belmont, M., Benedetti, Angela, Bernhard, G. H., Berrisford, Paul, Berry, David I., Bhatt, U. S., Bissolli, Peter, Bjerke, J., Blake, Eric S., Blenkinsop, Stephen, Blunden, Jessica, Bolmgren, K., Bosilovich, Michael G., Boucher, Olivier, Bouchon, Marilú, Box, J. E., Boyer, Tim, Braathen, Geir O., Bromwich, David H., Brown, R., Buehler, S., Bulygina, Olga N., Burgess, D., Calderón, Blanca, Camargo, Suzana J., Campbell, Ethan C., Campbell, Jayaka D., Cappelen, J., Carrea, Laura, Carter, Brendan R., Castro, Anabel, Chambers, Don P., Cheng, Lijing, Christiansen, Hanne H., Christy, John R., Chung, E. S., Clem, Kyle R., Coelho, Caio A.S., Coldewey-Egbers, Melanie, Colwell, Steve, Cooper, Owen R., Copland, L., Costanza, Carol, Covey, Curt, Coy, Lawrence, Cronin, T., Crouch, Jake, Cruzado, Luis, Daniel, Raychelle, Davis, Sean M., Davletshin, S. G., De Eyto, Elvira, De Jeu, Richard A.M., De La Cour, Jacqueline L., De Laat, Jos, De Gasperi, Curtis L., Degenstein, Doug, Deline, P., Demircan, Mesut, Derksen, C., Dewitte, Boris, Dhurmea, R., Di Girolamo, Larry, Diamond, Howard J., Dickerson, C., Dlugokencky, Ed J., Dohan, Kathleen, Dokulil, Martin T., Dolman, A. Johannes, Domingues, Catia M., Domingues, Ricardo, Donat, Markus G., Dong, Shenfu, Dorigo, Wouter A., Drozdov, D. S., Dunn, Robert J.H., Durre, Imke, Dutton, Geoff S., Eakin, C. Mark, El Kharrim, M., Elkins, James W., Epstein, H. E., Espinoza, Jhan C., Famiglietti, James S., Farmer, J., Farrell, S., Fauchald, P., Fausto, R. S., Feely, Richard A., Feng, Z., Fenimore, Chris, Fettweis, X., Fioletov, Vitali E., Flemming, Johannes, Fogt, Ryan L., Folland, Chris, Forbes, B. C., Foster, Michael J., Francis, S. D., Franz, Bryan A., Frey, Richard A., Frith, Stacey M., Froidevaux, Lucien, Ganter, Catherine, Geiger, Erick F., Gerland, S., Gilson, John, Gobron, Nadine, Goldenberg, Stanley B., Gomez, Andrea M., Goni, Gustavo, Grooß, Jens Uwe, Gruber, Alexander, Guard, Charles P., Gugliemin, Mario, Gupta, S. K., Gutiérrez, Dimitri, Haas, C., Hagos, S., Hahn, Sebastian, Haimberger, Leo, Hall, Brad D., Halpert, Michael S., Hamlington, Benjamin D., Hanna, E., Hansen, K., Hanssen-Bauer, L., Harris, Ian, Hartfield, Gail, Heidinger, Andrew K., Heim, Richard R., Helfrich, S., Hemming, D. L., Hendricks, S., Hernández, Rafael, Hernández, Sosa Marieta, Heron, Scott F., Heuzé, C., Hidalgo, Hugo G., Ho, Shu Peng, Hobbs, William R., Horstkotte, T., Huang, Boyin, Hubert, Daan, Hueuzé, Céline, Hurst, Dale F., Ialongo, Iolanda, Ibrahim, M. M., Ijampy, J. A., Inness, Antje, Isaac, Victor, Isaksen, K., Ishii, Masayoshi, Jacobs, Stephanie J., Jeffries, Martin O., Jevrejeva, Svetlana, Jiménez, C., Jin, Xiangze, John, Viju, Johns, William E., Johnsen, Bjørn, Johnson, Bryan, Johnson, Gregory C., Johnson, Kenneth S., Jones, Philip D., Jumaux, Guillaume, Kabidi, Khadija, Kaiser, J. W., Karaköylü, Erdem M., Kato, Seiji, Kazemi, A., Keller, Linda M., Kennedy, John, Kerr, Kenneth, Khan, M. S., Kholodov, A. L., Khoshkam, Mahbobeh, Killick, Rachel, Kim, Hyungjun, Kim, S. J., Klotzbach, Philip J., Knaff, John A., Kohler, J., Korhonen, Johanna, Korshunova, Natalia N., Kramarova, Natalya, Kratz, D. P., Kruger, Andries, Kruk, Michael C., Krumpen, T., Ladd, C., Lakatos, Mónika, Lakkala, Kaisa, Lander, Mark A., Landschützer, Peter, Landsea, Chris W., Lankhorst, Matthias, Lavado-Casimiro, Waldo, Lazzara, Matthew A., Lee, S. E., Lee, T. C., Leuliette, Eric, L'Heureux, Michelle, Li, Tim, Lieser, Jan L., Lin, I. I., Mears, Carl A., Liu, Gang, Li, Bailing, Liu, Hongxing, Locarnini, Ricardo, Loeb, Norman G., Long, Craig S., López, Luis A., Lorrey, Andrew M., Loyola, Diego, Lumpkin, Rick, Luo, Jing Jia, Luojus, K., Luthcke, S., Macias-Fauria, M., Malkova, G. V., Manney, Gloria L., Marcellin, Vernie, Marchenko, S. S., Marengo, José A., Marín, Dora, Marra, John J., Marszelewski, Wlodzimierz, Martens, B., Martin, A., Martínez, Alejandra G., Martínez-Güingla, Rodney, Martínez-Sánchez, Odalys, Marsh, Benjamin L., Lyman, John M., Massom, Robert A., May, Linda, Mayer, Michael, Mazloff, Matthew, McBride, Charlotte, McCabe, M. F., McCarthy, Mark, Meier, W., Meijers, Andrew J.S., Mekonnen, Ademe, Mengistu Tsidu, G., Menzel, W. Paul, Merchant, Christopher J., Meredith, Michael P., Merrifield, Mark A., Miller, Ben, Miralles, Diego G., Mitchum, Gary T., Mitro, Sukarni, Moat, Ben, Mochizuki, Y., Monselesan, Didier, Montzka, Stephen A., Mora, Natalie, Morice, Colin, Mosquera-Vásquez, Kobi, Mostafa, Awatif E., Mote, T., Mudryk, L., Mühle, Jens, Mullan, A. Brett, Müller, Rolf, Myneni, R., Nash, Eric R., Nerem, R. Steven, Newman, L., Newman, Paul A., Nielsen-Gammon, John W., Nieto, Juan José, Noetzli, Jeannette, Noll, Ben E., O'Neel, S., Osborn, Tim J., Osborne, Emily, Overland, J., Oyunjargal, Lamjav, Park, T., Pasch, Richard J., Pascual-Ramírez, Reynaldo, Pastor Saavedra, Maria Asuncion, Paterson, Andrew M., Paulik, Christoph, Pearce, Petra R., Peltier, Alexandre, Pelto, Mauri S., Peng, Liang, Perkins-Kirkpatrick, Sarah E., Perovich, Don, Petropavlovskikh, Irina, Pezza, Alexandre B., Phillips, C., Phillips, David, Phoenix, G., Pinty, Bernard, Pinzon, J., Po-Chedley, S., Polashenski, C., Purkey, Sarah G., Quispe, Nelson, Rajeevan, Madhavan, Rakotoarimalala, C., Rayner, Darren, Raynolds, M. K., Reagan, James, Reid, Phillip, Reimer, Christoph, Rémy, Samuel, Revadekar, Jayashree V., Richardson, A. D., Richter-Menge, Jacqueline, Ricker, R., Rimmer, Alon, Robinson, David A., Rodell, Matthew, Rodriguez Camino, Ernesto, Romanovsky, Vladimir E., Ronchail, Josyane, Rosenlof, Karen H., Rösner, Benjamin, Roth, Chris, Roth, David Mark, Rusak, James A., Rutishäuser, T., Sallée, Jean Bapiste, Sánchez-Lugo, Ahira, Santee, Michelle L., Sasgen, L., Sawaengphokhai, P., Sayad, T. A., Sayouri, Amal, Scambos, Ted A., Scanlon, T., Schenzinger, Verena, Schladow, S. Geoffrey, Schmid, Claudia, Schmid, Martin, Schreck, Carl J., Selkirk, H. B., Send, Uwe, Sensoy, Serhat, Sharp, M., Shi, Lei, Shiklomanov, Nikolai I., Shimaraeva, Svetlana V., Siegel, David A., Silow, Eugene, Sima, Fatou, Simmons, Adrian J., Skirving, William J., Smeed, David A., Smeets, C. J.P.P., Smith, Adam, Smith, Sharon L., Soden, B., Sofieva, Viktoria, Sparks, T. H., Spence, Jacqueline M., Spillane, Sandra, Srivastava, A. K., Stackhouse, Paul W., Stammerjohn, Sharon, Stanitski, Diane M., Steinbrecht, Wolfgang, Stella, José L., Stengel, M., Stephenson, Kimberly, Stephenson, Tannecia S., Strahan, Susan, Streletskiy, Dimitri A., Strong, Alan E., Sun-Mack, Sunny, Sutton, Adrienne J., Swart, Sebastiaan, Sweet, William, Takahashi, Kenneth S., Tamar, Gerard, Taylor, Michael A., Tedesco, M., Thackeray, S. J., Thoman, R. L., Thompson, Philip, Thomson, L., Thorsteinsson, T., Timbal, Bertrand, Timmermans, M. L., TImofeyev, Maxim A., Tirak, Kyle V., Tobin, Skie, Togawa, H., Tømmervik, H., Tourpali, Kleareti, Trachte, Katja, Trewin, Blair C., Triñanes, Joaquin A., Trotman, Adrian R., Tschudi, M., Tucker, C. J., Tye, Mari R., Van As, D., Van De Wal, R. S.W., Van Der Ronald, J. A., Van Der Schalie, Robin, Van Der Schrier, Gerard, Van Der Werf, Guido R., Van Meerbeeck, Cedric J., Velden, Christopher S., Velicogna, I., Verburg, Piet, Vickers, H., Vincent, Lucie A., Vömel, Holger, Vose, Russell S., Wagner, Wolfgang, Walker, D. A., Walsh, J., Wang, Bin, Wang, Junhong, Wang, Lei, Wang, M., Wang, Ray, Wang, Sheng Hung, Wanninkhof, Rik, Watanabe, Shohei, Weber, Mark, Webster, M., Weller, Robert A., Westberry, Toby K., Weyhenmeyer, Gesa A., Whitewood, Robert, Widlansky, Matthew J., Wiese, David N., Wijffels, Susan E., Wilber, Anne C., Wild, Jeanette D., Willett, Kate M., Willis, Josh K., Wolken, G., Wong, Takmeng, Wood, E. F., Wood, K., Woolway, R. Iestyn, Wouters, B., Xue, Yan, Yin, Xungang, Yoon, Huang, York, A., Yu, Lisan, Zambrano, Eduardo, Zhang, Huai Min, Zhang, Peiqun, Zhao, Guanguo, Zhao, Lin, Zhu, Zhiwei, Ziel, R., Ziemke, Jerry R., Ziese, Markus G., Griffin, Jessicca, Hammer, Gregory, Love-Brotak, S. Elizabeth, Misch, Deborah J., Riddle, Deborah B., Slagle, Mary, Sprain, Mara, Veasey, Sara W., McVicar, Tim R., Sub Dynamics Meteorology, Sub Soft Condensed Matter, LS Religiewetenschap, Sub Atmospheric physics and chemistry, Zonder bezoldiging NED, LS Taalverwerving, Leerstoel Tubergen, Afd Chemical Biology and Drug Discovery, Hafd Faculteitsbureau GW, Afd Pharmacology, Dep IRAS, Marine and Atmospheric Research, and OFR - Religious Studies
- Subjects
Atmospheric Science - Abstract
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991.
- Published
- 2018
46. Tests of ocean-tide models by analysis of satellite-to-satellite range measurements: an update
- Author
-
Ray, R D, primary, Loomis, B D, primary, Luthcke, S B, primary, and Rachlin, K E, primary
- Published
- 2019
- Full Text
- View/download PDF
47. VCL Laser Altimeter Surface Return Expected Geolocation Performance
- Author
-
Luthcke, S. B, Blair, J. B, Hofton, M. A, Rowlands, D. D, Zelensky, N. P, and Smith, David E
- Subjects
Earth Resources And Remote Sensing - Abstract
The Vegetation Canopy Lidar (VCL) mission, expected to launch in the spring of 2002, will carry a unique Multi-Beam Laser Altimeter (MBLA) instrument designed to observe vegetative canopy structure for a nominal mission duration of 2 years. The VCL MBLA is a three-beam instrument where each laser is capable of producing returns with 30-m along-track spacing and 25-m-diameter footprints. Identifying the precise location of the point on the Earth's surface from which the laser energy reflects is a critical issue in the validation and application of the data. The resultant geolocation accuracy is dependent on the performance of many components of the VCL system including: laser pulse round trip travel time observation to surface, navigation tracking data, attitude determination system data, timing, laser pointing and body orientation stability, knowledge of instrument and navigation tracking point positions, media and geophysical corrections. Additionally, it is critical to calibrate on-orbit instrument parameters including pointing and range corrections. The geolocation and calibration methodology and algorithms will be summarized. A detailed geolocation error analysis identifying the contributions from each system component, along with the resultant expected geolocation accuracy, will be presented. A brief discussion of the operational geolocation process will also be presented. Science and data validation implications from geolocation performance will be summarized.
- Published
- 2000
48. Orbit Determination for Mars Global Surveyor During Mapping
- Author
-
Lemoine, F. G, Rowlands, D. D, Smith, D. E, Pavlis, D. E, Chinn, D. S, Luthcke, S. B, and Neumann, G. A
- Subjects
Lunar And Planetary Exploration - Abstract
The Mars Global Surveyor (MGS) spacecraft reached a low-altitude circular orbit on February 4, 1999, after the termination of the second phase of aerobraking. The MGS spacecraft carries the Mars Orbiter Laser Altimeter (MOLA) whose primary goal is to derive a global, geodetically referenced 0.2 deg x 0.2 deg topographic grid of Mars with a vertical accuracy of better than 30 meters. During the interim science orbits in the' Hiatus mission phase (October - November 1997), and the Science Phasing Orbits (March - April, 1998, and June - July 1998) 208 passes of altimeter data were collected by the MOLA instrument. On March 1, 1999 the first ten orbits of MOLA altimeter data from the near-circular orbit were successfully returned from MGS by the Deep Space Network (DSN). Data will be collected from MOLA throughout the Mapping phase of the MCS mission, or for at least one Mars year (687 days). Whereas the interim orbits of Hiatus and SPO were highly eccentric, and altimeter data were only collected near periapsis when the spacecraft was below 785 km, the Mapping orbit of MGS is near circular, and altimeter data will be collected continuously at a rate of 10 Hz. The proper analysis of the altimeter data requires that the orbit of the MGS spacecraft be known to an accuracy comparable to that of the quality of the altimeter data. The altimeter has an ultimate precision of 30 cm on mostly flat surfaces, so ideally the orbits of the MGS spacecraft should be known to this level. This is a stringent requirement, and more realistic goals of orbit error for MGS are ten to thirty meters. In this paper we will discuss the force and measurement modelling required to achieve this objective. Issues in force modelling include the proper modelling of the gravity field of Mars, and the modelling of non-conservatives forces, including the development of a 'macro-model', in a similar fashion to TOPEX/POSEIDON and TDRSS. During Cruise and Aerobraking, the high gain antenna (HGA) was stowed on the +X face of the spacecraft. On March 29, 1999 the HGA will be deployed on a meter long boom which will remain Earth-pointing while the instrument panel (including the MOLA instrument) remains pointed at nadir. The tracking data must be corrected for the regular motion of the high gain antenna with respect to the center of mass, and the success of the MGS determination during Mapping will depend on correctly accounting for this offset in the measurement model.
- Published
- 1999
49. The Use of Laser Altimetry in the Orbit and Attitude Determination of Mars Global Surveyor
- Author
-
Rowlands, D. D, Pavlis, D. E, Lemoine, F. G, Neumann, G. A, and Luthcke, S. B
- Subjects
Astrodynamics - Abstract
Altimetry from the Mars Observer Laser Altimeter (MOLA) which is carried on board Mars Global Surveyor (MGS) has been analyzed for the period of the MOS mission known as Science Phasing Orbit 1 (SPO-1). We have used these altimeter ranges to improve orbit and attitude knowledge for MGS. This has been accomplished by writing crossover constraint equations that have been derived from short passes of MOLA data. These constraint equations differ from traditional Crossover constraints and exploit the small foot print associated with laser altimetry.
- Published
- 1999
- Full Text
- View/download PDF
50. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96
- Author
-
Lemoine, F. G, Kenyon, S.C, Factor, J. K, Trimmer, R. G, Pavlis, N. K, Chinn, D. S, Cox, C. M, Klosko, S. M, Luthcke, S. B, Torrence, M. H, Wang, Y. M, Williamson, R. G, Pavlis, E. C, Rapp, R. H, and Olson, T. R
- Subjects
Earth Resources And Remote Sensing - Abstract
The NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency (NIMA), and The Ohio State University (OSU) have collaborated to develop an improved spherical harmonic model of the Earth's gravitational potential to degree 360. The new model, Earth Gravitational Model 1996 (EGM96), incorporates improved surface gravity data, altimeter-derived gravity anomalies from ERS-1 and from the GEOSAT Geodetic Mission (GM), extensive satellite tracking data-including new data from Satellite Laser Ranging (SLR), the Global Postioning System (GPS), NASA's Tracking and Data Relay Satellite System (TDRSS), the French DORIS system, and the US Navy TRANET Doppler tracking system-as well as direct altimeter ranges from TOPEX/POSEIDON (T/P), ERS-1, and GEOSAT. The final solution blends a low-degree combination model to degree 70, a block-diagonal solution from degree 71 to 359, and a quadrature solution at degree 360. The model was used to compute geoid undulations accurate to better than one meter (with the exception of areas void of dense and accurate surface gravity data) and realize WGS84 as a true three-dimensional reference system. Additional results from the EGM96 solution include models of the dynamic ocean topography to degree 20 from T/P and ERS-1 together, and GEOSAT separately, and improved orbit determination for Earth-orbiting satellites.
- Published
- 1998
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.