1. Iron Hack - A symposium/hackathon focused on porphyrias, Friedreich’s ataxia, and other rare iron-related diseases [version 1; peer review: 2 approved]
- Author
-
Gloria C. Ferreira, Jenna Oberstaller, Renée Fonseca, Thomas E. Keller, Swamy Rakesh Adapa, Justin Gibbons, Chengqi Wang, Xiaoming Liu, Chang Li, Minh Pham, Guy W. Dayhoff II, Linh M. Duong, Luis Tañón Reyes, Luciano Enrique Laratelli, Douglas Franz, Segun Fatumo, ATM Golam Bari, Audrey Freischel, Lindsey Fiedler, Omkar Dokur, Krishna Sharma, Deborah Cragun, Ben Busby, and Rays H.Y. Jiang
- Subjects
Medicine ,Science - Abstract
Background: Basic and clinical scientific research at the University of South Florida (USF) have intersected to support a multi-faceted approach around a common focus on rare iron-related diseases. We proposed a modified version of the National Center for Biotechnology Information’s (NCBI) Hackathon-model to take full advantage of local expertise in building “Iron Hack”, a rare disease-focused hackathon. As the collaborative, problem-solving nature of hackathons tends to attract participants of highly-diverse backgrounds, organizers facilitated a symposium on rare iron-related diseases, specifically porphyrias and Friedreich’s ataxia, pitched at general audiences. Methods: The hackathon was structured to begin each day with presentations by expert clinicians, genetic counselors, researchers focused on molecular and cellular biology, public health/global health, genetics/genomics, computational biology, bioinformatics, biomolecular science, bioengineering, and computer science, as well as guest speakers from the American Porphyria Foundation (APF) and Friedreich’s Ataxia Research Alliance (FARA) to inform participants as to the human impact of these diseases. Results: As a result of this hackathon, we developed resources that are relevant not only to these specific disease-models, but also to other rare diseases and general bioinformatics problems. Within two and a half days, “Iron Hack” participants successfully built collaborative projects to visualize data, build databases, improve rare disease diagnosis, and study rare-disease inheritance. Conclusions: The purpose of this manuscript is to demonstrate the utility of a hackathon model to generate prototypes of generalizable tools for a given disease and train clinicians and data scientists to interact more effectively.
- Published
- 2019
- Full Text
- View/download PDF