7 results on '"Luijten I"'
Search Results
2. Female Alms1-deficient mice develop echocardiographic features of adult but not infantile Alström syndrome cardiomyopathy.
- Author
-
McKay EJ, Luijten I, Broadway-Stringer S, Thomson A, Weng X, Gehmlich K, Gray GA, and Semple RK
- Subjects
- Animals, Female, Male, Mice, Cell Cycle Proteins deficiency, Cell Cycle Proteins genetics, Mice, Knockout, Myocardium pathology, Myocardium metabolism, Myocytes, Cardiac metabolism, Myocytes, Cardiac pathology, Phenotype, Sex Characteristics, Alstrom Syndrome complications, Alstrom Syndrome genetics, Cardiomyopathies diagnostic imaging, Cardiomyopathies pathology, Cardiomyopathies genetics, Cardiomyopathies physiopathology, Echocardiography
- Abstract
Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes., Competing Interests: Competing interests R.K.S. has received consulting fees from Novartis, Astra Zeneca and Alnylam, research contribution in kind from Pfizer, and speaking fees from Novo Nordisk, Eli Lilly and Amryt., (© 2024. Published by The Company of Biologists Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
3. Mesenchymal-specific Alms1 knockout in mice recapitulates metabolic features of Alström syndrome.
- Author
-
McKay EJ, Luijten I, Weng X, Martinez de Morentin PB, De Frutos González E, Gao Z, Kolonin MG, Heisler LK, and Semple RK
- Subjects
- Animals, Mice, Male, Female, Cell Cycle Proteins metabolism, Cell Cycle Proteins genetics, Insulin Resistance, Fatty Liver metabolism, Fatty Liver genetics, Obesity metabolism, Obesity genetics, Hyperphagia metabolism, Hyperphagia genetics, Adipose Tissue metabolism, Mice, Inbred C57BL, Body Composition, Mice, Knockout, Mesenchymal Stem Cells metabolism, Alstrom Syndrome metabolism, Alstrom Syndrome genetics
- Abstract
Objective: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout., Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues., Results: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression., Conclusions: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Robert Semple reports a relationship with AstraZeneca Pharmaceuticals LP that includes: consulting or advisory. Robert Semple reports a relationship with Amryt Pharmaceuticals Inc that includes: consulting or advisory. Robert Semple reports a relationship with Eli Lilly and Company that includes: speaking and lecture fees. Robert Semple reports a relationship with Novo Nordisk Inc that includes: speaking and lecture fees. Robert Semple reports a relationship with Novartis Pharma AG that includes: consulting or advisory. Lora Heisler reports a relationship with AstraZeneca Pharmaceuticals LP that includes: consulting or advisory. Co-author LKH is an editor for Molecular Metabolism If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Mesenchymal-specific Alms1 knockout in mice recapitulates key metabolic features of Alström Syndrome.
- Author
-
McKay EJ, Luijten I, Weng X, Martinez de Morentin PB, De Frutos González E, Gao Z, Kolonin MG, Heisler LK, and Semple RK
- Abstract
Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout., Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues., Results: Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression., Conclusions: Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.
- Published
- 2023
- Full Text
- View/download PDF
5. A mouse model of human mitofusin-2-related lipodystrophy exhibits adipose-specific mitochondrial stress and reduced leptin secretion.
- Author
-
Mann JP, Duan X, Patel S, Tábara LC, Scurria F, Alvarez-Guaita A, Haider A, Luijten I, Page M, Protasoni M, Lim K, Virtue S, O'Rahilly S, Armstrong M, Prudent J, Semple RK, and Savage DB
- Subjects
- Humans, Animals, Mice, Leptin metabolism, Adiponectin metabolism, Adipose Tissue metabolism, Obesity metabolism, Hydrolases metabolism, Mitochondria metabolism, Insulin Resistance, Lipodystrophy genetics, Lipodystrophy metabolism
- Abstract
Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2 , encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2
R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response., Competing Interests: JM, XD, SP, LT, FS, AA, AH, IL, MP, MP, KL, SV, SO, MA, JP, RS, DS No competing interests declared, (© 2023, Mann et al.)- Published
- 2023
- Full Text
- View/download PDF
6. p53 Regulates Mitochondrial Dynamics in Vascular Smooth Muscle Cell Calcification.
- Author
-
Phadwal K, Tang QY, Luijten I, Zhao JF, Corcoran B, Semple RK, Ganley IG, and MacRae VE
- Subjects
- Humans, beta-Galactosidase metabolism, Cells, Cultured, Myocytes, Smooth Muscle metabolism, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Mitochondrial Dynamics genetics, Mitochondrial Dynamics physiology, Muscle, Smooth, Vascular metabolism, Vascular Calcification genetics, Vascular Calcification metabolism
- Abstract
Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and β-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and β-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.
- Published
- 2023
- Full Text
- View/download PDF
7. Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure.
- Author
-
Kwok A, Zvetkova I, Virtue S, Luijten I, Huang-Doran I, Tomlinson P, Bulger DA, West J, Murfitt S, Griffin J, Alam R, Hart D, Knox R, Voshol P, Vidal-Puig A, Jensen J, O'Rahilly S, and Semple RK
- Subjects
- Adipose Tissue, Brown metabolism, Adiposity, Animals, Class Ia Phosphatidylinositol 3-Kinase metabolism, Diet, High-Fat, Dyslipidemias genetics, Energy Metabolism genetics, Fatty Liver metabolism, Growth Disorders genetics, Hypercalcemia genetics, Inflammation metabolism, Insulin metabolism, Lipogenesis, Liver metabolism, Male, Metabolic Diseases genetics, Mice, Mice, Inbred C57BL, Nephrocalcinosis genetics, Obesity genetics, Phosphatidylinositol 3-Kinases genetics, Phosphatidylinositol 3-Kinases metabolism, Class Ia Phosphatidylinositol 3-Kinase genetics, Growth Disorders metabolism, Hypercalcemia metabolism, Insulin Resistance genetics, Metabolic Diseases metabolism, Nephrocalcinosis metabolism
- Abstract
Objective: Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance., Methods: The human pathogenic Pik3r1 Y657
∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically., Results: Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia., Conclusions: Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted., (Copyright © 2020 The Authors. Published by Elsevier GmbH.. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.