Nicholas Frattini, E. Zalys-Geller, Philip Reinhold, Alec Eickbusch, Shyam Shankar, Luigi Frunzio, Steven Touzard, Shruti Puri, Robert Schoelkopf, Michel Devoret, Mazyar Mirrahimi, Philippe Campagne-Ibarcq, Volodymyr Sivak, Yale University [New Haven], QUANTum Information Circuits (QUANTIC), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Quantum bits are more robust to noise when they are encoded non-locally. In such an encoding, errors affecting the underlying physical system can then be detected and corrected before they corrupt the encoded information. In 2001, Gottesman, Kitaev and Preskill (GKP) proposed a hardware-efficient instance of such a qubit, which is delocalised in the phase-space of a single oscillator. However, implementing measurements that reveal error syndromes of the oscillator while preserving the encoded information has proved experimentally challenging: the only realisation so far relied on post-selection, which is incompatible with quantum error correction (QEC). The novelty of our experiment is precisely that it implements these non-destructive error-syndrome measurements for a superconducting microwave cavity. We design and implement an original feedback protocol that incorporates such measurements to prepare square and hexagonal GKP code states. We then demonstrate QEC of an encoded qubit with unprecedented suppression of all logical errors, in quantitative agreement with a theoretical estimate based on the measured imperfections of the experiment. Our protocol is applicable to other continuous variable systems and, in contrast with previous implementations of QEC, can mitigate all logical errors generated by a wide variety of noise processes, and open a way towards fault-tolerant quantum computation., Text and figures edited for clarity. The claims of the paper remain the same. Author list fixed