Ferdinand Roesch, Chelsea Cereghino, Lucia Carrau, Alexandra Hardy, Helder Ribeiro-Filho, Annabelle Henrion Lacritick, Cassandra Koh, Jeffrey Marano, Tyler Bates, Pallavi Rai, Christina Chuong, Shamima Akter, Thomas Vallet, Hervé Blanc, Truitt Elliot, Anne M. Brown, Pawel Michalak, Tanya LeRoith, Jesse Bloom, Rafael Elias Marques, Maria-Carla Saleh, Marco Vignuzzi, James Weger-Lucarelli, Virginia Tech [Blacksburg], Populations virales et Pathogenèse - Viral Populations and Pathogenesis, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), New York University Langone Medical Center (NYU Langone Medical Center), NYU System (NYU), Centro Nacional de Pesquisa em Energia e Materiais = Brazilian Center for Research in Energy and Materials (CNPEM), Virus et Interférence ARN - Viruses and RNA Interference, George Mason University [Fairfax], Program of Genetics, Bioinformatics, and Computational Biology [Blacksburg] (GBCB), University of Haifa [Haifa], Fred Hutchinson Cancer Research Center [Seattle] (FHCRC), Howard Hughes Medical Institute [Chevy Chase] (HHMI), Howard Hughes Medical Institute (HHMI), This work was funded by the DARPA PREEMPT program administered through DARPA Cooperative Agreement HR001118S0017, this funding was awarded to M-C.S., M.V, and J.W-L. This work also received funding from Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID) to M-C.S. and M.V. Further support was provided by startup funds awarded to J.W-L by the Virginia-Maryland College of Veterinary Medicine and a grant from the One Health Research Funding Program awarded to J.W-L and P.M., and ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010)
International audience; Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.Author summary: Mosquito-borne viruses must replicate in both mosquito and vertebrate hosts to be maintained in nature successfully. When viruses that are typically transmitted by forest dwelling mosquitoes enter urban environments due to deforestation or travel, they must adapt to urban mosquito vectors to transmit effectively. For mosquito-borne viruses, the need to also replicate in a vertebrate host like humans constrains this adaptation process. Towards understanding how the emerging alphavirus, Mayaro virus, might adapt to transmission by the urban mosquito vector, Ae. aegypti, we used natural evolution approaches to identify several viral mutations that impacted replication in both mosquito and vertebrate hosts. We show that a single mutation in the receptor binding domain of E2 increased transmission by Ae. aegypti after bypassing the midgut infection barrier but simultaneously reduced replication and pathology in a mouse model. Mechanistic studies suggested that this mutation decreases the dependence of MAYV on human Mxra8 and the putative MAYV receptor human ApoER2 during replication. This suggests MAYV with this mutation alone is unlikely to be maintained in a natural transmission cycle between mosquitoes and humans. Understanding the adaptive potential of emerging viruses is critical to preventing future pandemics.