11 results on '"Lucas-Kanade tracker"'
Search Results
2. Deep Learning with Vision-based Technologies for Structural Damage Detection and Health Monitoring
- Author
-
Bai, Yongsheng
- Subjects
- Civil Engineering, Computer Science, Mechanics, deep learning, structural damage classification, structural damage detection, crack detection, spalling detection, ResNet, U-Net, cascaded networks, Mask R-CNN, structural health monitoring, shaking table tests, Lucas-Kanade tracker, displacement subtraction, frequency subtraction, progressive collapse, LiDAR, camera, drones.
- Abstract
There are three main research conducted in this paper, including using deep learning methods with vision-based technologies on Structural Damage Detection (SDD), Structural Health Monitoring (SHM) and progressive collapse study. During the learning and improvement process, many goals of automation in SDD and SHM have been achieved, although there will be a large room for further improvement and development on these studies. In progressive collapse study, remote sensing technologies and data fusion are applied on a field experiment of a real building at the Central Campus of the Ohio State University. The major contributions of this paper are shown as follows:A few comprehensive experimental studies for automated SDD in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual Network (ResNet) is utilized to identify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, material types, etc. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above $67.6\%$ for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks.Studies are conducted with a pipeline to automatically track and measure displacements and vibrations of structures or structural components in laboratory and field experiments. This novel framework that uses computer vision and deep learning methods to mimic human vision system for the dynamic performance assessment of in-service infrastructure with various camera placements. On one hand, the static deformations of cylinders and small-scale reinforced concrete beams in the laboratory tests are captured and measured by the proposed framework at first. Then two shaking table tests in the lab are utilized to assess the dynamic performance of the simulated structures. On the other hand, several bridges, including pedestrian, railway, and traffic bridges, are tested for their dynamic performance in field experiments with different camera placements: remote, structure-mounted, and drone-mounted cameras. To remove systematic motions of cameras and to capture the fundamental frequency of these tested structures, two techniques, displacement subtraction and frequency subtraction, are applied. To better understanding of practical applications, critical parameters for camera settings and data processing techniques, such as video frame-rates, window size and locations, and sampling rates on visual data are studied. It shows that not only the vibrations and the frequencies of the simulated structures (i.e., in lab tests) or the in-service structures (i.e., in filed experiments), but also the static deformation of structures or structural components, can be tracked and measured accurately by our proposed framework.The performance of a building in progressive collapse study is monitored and analyzed with the methods developed in previous studies. On one hand, we applied the proposed methods to detect structural damage on this reinforced concrete (RC) structure that was tested, including visual data from cell phones, inside and outside cameras, and drones. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. On the other hand, the proposed methods to measure the deformations and vibrations are utilized to process visual data from outside and inside cameras, and drones. Data from different sources are fused for capturing the performance of the structural elements under the scenarios of the sudden loss of the columns and slabs. The data fusion technique is useful to investigate the characteristics of this framed structure, especially when the traditional sensors such as strain gauges and Linear Variable Displacement Transducers (LVDTs) didn't work in the experiments. Since visual data acquisition and preparation, and techniques of data processing have been inclusively researched for real applications with deep learning, many experimental studies on SDD and SHM are carried out and promising results are obtained in this paper. In addition, the vibration-based technologies or traditional sensors are used as the reference. Our goal is to meet the needs for automatic detection of structural damage and accurate measurements for the performance of the structures or structural elements, thus, the efficiency and effectiveness of these frameworks are tested and analyzed. In summary, these research in this paper indicate that vision-based technologies with deep learning can be applied well on structural engineering domain, and facilitate structural engineers' job by providing reliable data and credential results. The methodologies developed in this paper can fill the gap of research and engineering applications in the future.
- Published
- 2022
3. Temporal analysis for fast motion detection in a crowd.
- Author
-
Mudjirahardjo, Panca, Tan, Joo, Kim, Hyoungseop, and Ishikawa, Seiji
- Abstract
We present a fast motion detection technique in a crowd as an abnormal motion based on optical flow and a motion history image (MHI). Since a camera view is usually not in perpendicular with motion direction, the velocity of motion is not uniform spatially. Instead of object detection directly from an image, we separate an image into several blocks. In this paper, we propose a novel method to analyze a motion using MHI representation, called a shift space and a shift histogram. Together with a velocity histogram, the method can detect fast motion in a crowd, realizing local abnormal event detection. The performance of the proposed method is experimentally illustrated and evaluated. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
4. Extending 3D Lucas-Kanade tracking with adaptive templates for head pose estimation.
- Author
-
Zhih-Wei Chen, Cheng-Chin Chiang, and Zi-Tian Hsieh
- Subjects
- *
THREE-dimensional display systems , *GAUSSIAN distribution , *STEREOSCOPIC views , *THREE-dimensional imaging , *INFORMATION display systems - Abstract
The Lucas-Kanade tracker (LKT) is a commonly used method to track target objects over 2D images. The key principle behind the object tracking of an LKT is to warp the object appearance so as to minimize the difference between the warped object's appearance and a pre-stored template. Accordingly, the 2D pose of the tracked object in terms of translation, rotation, and scaling can be recovered from the warping. To extend the LKT for 3D pose estimation, a model-based 3D LKT assumes a 3D geometric model for the target object in the 3D space and tries to infer the 3D object motion by minimizing the difference between the projected 2D image of the 3D object and the pre-stored 2D image template. In this paper, we propose an extended model-based 3D LKT for estimating 3D head poses by tracking human heads on video sequences. In contrast to the original model-based 3D LKT, which uses a template with each pixel represented by a single intensity value, the proposed model-based 3D LKT exploits an adaptive template with each template pixel modeled by a continuously updated Gaussian distribution during head tracking. This probabilistic template modeling improves the tracker's ability to handle temporal fluctuation of pixels caused by continuous environmental changes such as varying illumination and dynamic backgrounds. Due to the new probabilistic template modeling, we reformulate the head pose estimation as a maximum likelihood estimation problem, rather than the original difference minimization procedure. Based on the new formulation, an algorithm to estimate the best head pose is derived. The experimental results show that the proposed extended model-based 3D LKT achieves higher accuracy and reliability than the conventional one does. Particularly, the proposed LKT is very effective in handling varying illumination, which cannot be well handled in the original LKT. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
5. Abnormal motion detection in an occlusion environment
- Author
-
Mudjirahardjo, Panca, Tan, Joo Kooi, Kim, Hyoungseop, and Ishikawa, Seiji
- Subjects
Lucas-Kanade tracker ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,abnormal motion ,velocity histogram ,k-means clustering ,Harris corner detector - Abstract
We present a motion classification approach to detect movements of interest (abnormal motion) based on optical flow. By tracking all feature points of a moving human in successive frames, we calculate the coordinate space and create feature space. This is done directly from the intensity information without explicitly computing the underlying motions. It requires no foreground segmentation, no prior learning of activities, no motion recognition and no object detection. First, we determine the abnormal scene and speed by using the velocity histogram. Then by using k-means clustering over velocity orientation and magnitude, we determine the abnormal direction. The performance of the proposed method is experimentally shown., SICE Annual Conference 2013 - International conference on Instrumentation, Control, Information Technology and System Integration September 14-17, 2013, Nagoya University, Nagoya, Japan
- Published
- 2013
6. Učení detektorů pomocí sledování objektů
- Author
-
Hradiš, Michal, Beran, Vítězslav, Buchtela, Radim, Hradiš, Michal, Beran, Vítězslav, and Buchtela, Radim
- Abstract
Práce se věnuje problematice dlouhodobého sledování objektů ve video sekvenci, konkrétně oblasti učení detektorů pomocí sledování objektů. V práci jsou diskutovány metody pro sledování objektů, detekci objektů a online učení a možnosti jejich nasazení v sofistikovanějších technikách, které kombinují sledování objektu a online učení detektorů., This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
7. Učení detektorů pomocí sledování objektů
- Author
-
Hradiš, Michal, Beran, Vítězslav, Buchtela, Radim, Hradiš, Michal, Beran, Vítězslav, and Buchtela, Radim
- Abstract
Práce se věnuje problematice dlouhodobého sledování objektů ve video sekvenci, konkrétně oblasti učení detektorů pomocí sledování objektů. V práci jsou diskutovány metody pro sledování objektů, detekci objektů a online učení a možnosti jejich nasazení v sofistikovanějších technikách, které kombinují sledování objektu a online učení detektorů., This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
8. Učení detektorů pomocí sledování objektů
- Author
-
Hradiš, Michal, Beran, Vítězslav, Hradiš, Michal, and Beran, Vítězslav
- Abstract
Práce se věnuje problematice dlouhodobého sledování objektů ve video sekvenci, konkrétně oblasti učení detektorů pomocí sledování objektů. V práci jsou diskutovány metody pro sledování objektů, detekci objektů a online učení a možnosti jejich nasazení v sofistikovanějších technikách, které kombinují sledování objektu a online učení detektorů., This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
9. Učení detektorů pomocí sledování objektů
- Author
-
Hradiš, Michal, Beran, Vítězslav, Hradiš, Michal, and Beran, Vítězslav
- Abstract
Práce se věnuje problematice dlouhodobého sledování objektů ve video sekvenci, konkrétně oblasti učení detektorů pomocí sledování objektů. V práci jsou diskutovány metody pro sledování objektů, detekci objektů a online učení a možnosti jejich nasazení v sofistikovanějších technikách, které kombinují sledování objektu a online učení detektorů., This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
10. Učení detektorů pomocí sledování objektů
- Author
-
Hradiš, Michal, Beran, Vítězslav, Hradiš, Michal, and Beran, Vítězslav
- Abstract
Práce se věnuje problematice dlouhodobého sledování objektů ve video sekvenci, konkrétně oblasti učení detektorů pomocí sledování objektů. V práci jsou diskutovány metody pro sledování objektů, detekci objektů a online učení a možnosti jejich nasazení v sofistikovanějších technikách, které kombinují sledování objektu a online učení detektorů., This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
11. Učení detektorů pomocí sledování objektů
- Author
-
Hradiš, Michal, Beran, Vítězslav, Buchtela, Radim, Hradiš, Michal, Beran, Vítězslav, and Buchtela, Radim
- Abstract
Práce se věnuje problematice dlouhodobého sledování objektů ve video sekvenci, konkrétně oblasti učení detektorů pomocí sledování objektů. V práci jsou diskutovány metody pro sledování objektů, detekci objektů a online učení a možnosti jejich nasazení v sofistikovanějších technikách, které kombinují sledování objektu a online učení detektorů., This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.