Eugenio Valdano, Luca Ferreri, Alexandre Darbon, Chiara Poletto, Lara Savini, Carla Ippoliti, Armando Giovannini, Peter Brommesson, Stefan Sellmann, Uno Wennergren, Andreas Koher, Jason Basset, Lentz, Hartmut H. K., Vitaly Belik, Philipp Hövel, Akos Jozwiak, Jessica Enright, Kao, Rowland R., Pauline Ezanno, Gael Beaunée, Elisabeta Vergu, Reinhard Fuchs, Klemens Fuchs, Beatriz Vidondo, Ana Pascual, Emily Courcier, Vittoria Colizza, Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Data Driven Innovation, AizoOn - Technology Consulting, Université Pierre et Marie Curie - Paris 6 (UPMC), Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale (IZSAM), Linköping University (LIU), Institut für Theoretische Physik (ITP), Leibniz Universität Hannover [Hannover] (LUH), Institute of Epidemiology, Helmholtz Centre Munich, Institute for Veterinary Epidemiology and Biostatistics, Free University of Berlin (FU), National Food Chain Safety Office, Boyd Orr Centre, Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, UMR 1300 Biologie, Epidémiologie et Analyse du Risque, Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Biologie, Epidémiologie et Analyse du Risque (BioEpAR)-Santé animale (S.A.), Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE), Institut National de la Recherche Agronomique (INRA), Austrian Agency for Health and Food Safety, Veterinary Public Health Institute, Universität Bern [Bern], Department of Agriculture and Environmental Affairs, Institute for Scientific Interchange, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Guiseppe Caporale (IZSAM), Partenaires INRAE, Institute für Theoretische Physik [Berlin], Technische Universität Berlin (TU), Institut für Theoretische Physik [Hannover] (ITP), ProdInra, Archive Ouverte, Technical University of Berlin / Technische Universität Berlin (TU), Leibniz Universität Hannover=Leibniz University Hannover, National Food Chain Safety Office (NEBIH), Biologie, Epidémiologie et analyse de risque en Santé Animale (BIOEPAR), Institut National de la Recherche Agronomique (INRA)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), and Universität Bern [Bern] (UNIBE)
Diseases affecting farmed cattle compromise both human and animal health and welfare, and represent a major cause of loss in economic revenue. Their spread is known to be driven, or at least facilitated, by animal displacements among livestock holdings, both within and across countries. As a result, studying the networks of animal movements is a key step in devising new prevention and containment strategies. Past works have already analyzed cattle networks in several European countries, highlighting complex interactions between topology, function and dynamics at different spatial and time resolutions. A comprehensive study, showing the impact of country-specific driving factors on network evolution and topology, is however still missing. By using data from several European countries, and focusing on the features relevant for the spread of infections, we perform a comparative analysis to highlight both general and country-specific patterns. We find that coarse-graining the structure into statistical distributions of centrality measures is an effective way to highlight the properties shared by all networks, which represent the fingerprint of a livestock market. The situation dramatically changes when we zoom in to the microscopic structure, as we find several country-specific characteristics, especially in temporal evolution. This twofold behavior suggests that on one hand it is possible to identify several global patterns in the ways animal disease spread, which can then be applied to countries for which data are unavailable, or incomplete. On the other hand, resolved country-specific data are needed when devising tailored and targeted intervention strategies