20 results on '"Lowery, C.M."'
Search Results
2. Data report: X-ray fluorescence scanning of sediment cores, IODP Expedition 390/393 Site U1557, South Atlantic Transect
- Author
-
Lowery, C.M., primary, Amadori, C., additional, Borrelli, C., additional, Christeson, G.L., additional, Estes, E.R., additional, Guertin, L., additional, Hertzberg, J., additional, Kaplan, M.R., additional, Koorapati, R.K., additional, Lam, A.R., additional, McIntyre, A., additional, Reece, J., additional, Robustelli Test, C., additional, Routledge, C.M., additional, Standring, P., additional, Sylvan, J.B., additional, Thompson, M., additional, Villa, A., additional, Wang, Y., additional, Wee, S.Y., additional, Williams, T.J., additional, Yeon, J., additional, Teagle, D.A.H., additional, and Coggon, R.M., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Data report: X-ray fluorescence scanning of sediment cores, IODP Expedition 390/393 Site U1561, South Atlantic Transect
- Author
-
Routledge, C.M., primary, Amadori, C., additional, Borrelli, C., additional, Christeson, G.L., additional, Estes, E.R., additional, Guertin, L., additional, Hertzberg, J., additional, Kaplan, M.R., additional, Koorapati, R.K., additional, Lam, A.R., additional, Lowery, C.M., additional, McIntyre, A., additional, Reece, J., additional, Robustelli Test, C., additional, Standring, P., additional, Sylvan, J.B., additional, Thompson, M., additional, Villa, A., additional, Wang, Y., additional, Wee, S.Y., additional, Williams, T.J., additional, Yeon, J., additional, Teagle, D.A.H., additional, and Coggon, R.M., additional
- Published
- 2024
- Full Text
- View/download PDF
4. Data report: X-ray fluorescence scanning of sediment cores, IODP Expedition 390/393 Site U1559, South Atlantic Transect
- Author
-
Robustelli Test, C., primary, Amadori, C., additional, Borrelli, C., additional, Christeson, G.L., additional, Estes, E.R., additional, Guertin, L., additional, Hertzberg, J., additional, Kaplan, M.R., additional, Koorapati, R.K., additional, Lam, A.R., additional, Lowery, C.M., additional, McIntyre, A., additional, Reece, J., additional, Routledge, C.M., additional, Standring, P., additional, Sylvan, J.B., additional, Thompson, M., additional, Villa, A., additional, Wang, Y., additional, Wee, S.Y., additional, Williams, T.J., additional, Yeon, J., additional, Teagle, D.A.H., additional, and Coggon, R.M., additional
- Published
- 2024
- Full Text
- View/download PDF
5. Expedition 390/393 methods
- Author
-
Coggon, R.M., primary, Teagle, D.A.H., additional, Sylvan, J.B., additional, Reece, J., additional, Estes, E.R., additional, Williams, T.J., additional, Christeson, G.L., additional, Aizawa, M., additional, Albers, E., additional, Amadori, C., additional, Belgrano, T.M., additional, Borrelli, C., additional, Bridges, J.D., additional, Carter, E.J., additional, D'Angelo, T., additional, Dinarès-Turell, J., additional, Doi, N., additional, Estep, J.D., additional, Evans, A., additional, Gilhooly III, W.P., additional, Grant, L.J.C., additional, Guérin, G.M., additional, Harris, M., additional, Hojnacki, V.M., additional, Hong, G., additional, Jin, X., additional, Jonnalagadda, M., additional, Kaplan, M.R., additional, Kempton, P.D., additional, Kuwano, D., additional, Labonte, J.M., additional, Lam, A.R., additional, Latas, M., additional, Lowery, C.M., additional, Lu, W., additional, McIntyre, A., additional, Moal-Darrigade, P., additional, Pekar, S.F., additional, Robustelli Test, C., additional, Routledge, C.M., additional, Ryan, J.G., additional, Santiago Ramos, D., additional, Shchepetkina, A., additional, Slagle, A.L., additional, Takada, M., additional, Tamborrino, L., additional, Villa, A., additional, Wang, Y., additional, Wee, S.Y., additional, Widlansky, S.J., additional, Yang, K., additional, Kurz, W., additional, Prakasam, M., additional, Tian, L., additional, Yu, T., additional, and Zhang, G., additional
- Published
- 2024
- Full Text
- View/download PDF
6. Site U1560
- Author
-
Teagle, D.A.H., primary, Reece, J., additional, Williams, T.J., additional, Coggon, R.M., additional, Sylvan, J.B., additional, Estes, E.R., additional, Christeson, G.L., additional, Albers, E., additional, Amadori, C., additional, Belgrano, T.M., additional, D'Angelo, T., additional, Doi, N., additional, Evans, A., additional, Guérin, G.M., additional, Harris, M., additional, Hojnacki, V.M., additional, Hong, G., additional, Jin, X., additional, Jonnalagadda, M., additional, Kuwano, D., additional, Labonte, J.M., additional, Lam, A.R., additional, Latas, M., additional, Lu, W., additional, Moal-Darrigade, P., additional, Pekar, S.F., additional, Robustelli Test, C., additional, Ryan, J.G., additional, Santiago Ramos, D., additional, Shchepetkina, A., additional, Villa, A., additional, Wee, S.Y., additional, Widlansky, S.J., additional, Aizawa, M., additional, Borrelli, C., additional, Bridges, J.D., additional, Carter, E.J., additional, Dinarès-Turell, J., additional, Estep, J.D., additional, Gilhooly III, W.P., additional, Grant, L.J.C., additional, Kaplan, M.R., additional, Kempton, P.D., additional, Lowery, C.M., additional, McIntyre, A., additional, Routledge, C.M., additional, Slagle, A.L., additional, Takada, M., additional, Tamborrino, L., additional, Wang, Y., additional, Yang, K., additional, Kurz, W., additional, Prakasam, M., additional, Tian, L., additional, Yu, T., additional, and Zhang, G., additional
- Published
- 2024
- Full Text
- View/download PDF
7. Site U1556
- Author
-
Coggon, R.M., primary, Sylvan, J.B., additional, Estes, E.R., additional, Teagle, D.A.H., additional, Reece, J., additional, Williams, T.J., additional, Christeson, G.L., additional, Aizawa, M., additional, Borrelli, C., additional, Bridges, J.D., additional, Carter, E.J., additional, Dinarès-Turell, J., additional, Estep, J.D., additional, Gilhooly III, W.P., additional, Grant, L.J.C., additional, Kaplan, M.R., additional, Kempton, P.D., additional, Lowery, C.M., additional, McIntyre, A., additional, Routledge, C.M., additional, Slagle, A.L., additional, Takada, M., additional, Tamborrino, L., additional, Wang, Y., additional, Yang, K., additional, Albers, E., additional, Amadori, C., additional, Belgrano, T.M., additional, D'Angelo, T., additional, Doi, N., additional, Evans, A., additional, Guérin, G.M., additional, Harris, M., additional, Hojnacki, V.M., additional, Hong, G., additional, Jin, X., additional, Jonnalagadda, M., additional, Kuwano, D., additional, Labonte, J.M., additional, Lam, A.R., additional, Latas, M., additional, Lu, W., additional, Moal-Darrigade, P., additional, Pekar, S.F., additional, Robustelli Test, C., additional, Ryan, J.G., additional, Santiago Ramos, D., additional, Shchepetkina, A., additional, Villa, A., additional, Wee, S.Y., additional, Widlansky, S.J., additional, Kurz, W., additional, Prakasam, M., additional, Tian, L., additional, Yu, T., additional, and Zhang, G., additional
- Published
- 2024
- Full Text
- View/download PDF
8. Expedition 390/393 summary
- Author
-
Coggon, R.M., primary, Teagle, D.A.H., additional, Sylvan, J.B., additional, Reece, J., additional, Estes, E.R., additional, Williams, T.J., additional, Christeson, G.L., additional, Aizawa, M., additional, Albers, E., additional, Amadori, C., additional, Belgrano, T.M., additional, Borrelli, C., additional, Bridges, J.D., additional, Carter, E.J., additional, D'Angelo, T., additional, Dinarès-Turell, J., additional, Doi, N., additional, Estep, J.D., additional, Evans, A., additional, Gilhooly III, W.P., additional, Grant, L.J.C., additional, Guérin, G.M., additional, Harris, M., additional, Hojnacki, V.M., additional, Hong, G., additional, Jin, X., additional, Jonnalagadda, M., additional, Kaplan, M.R., additional, Kempton, P.D., additional, Kuwano, D., additional, Labonte, J.M., additional, Lam, A.R., additional, Latas, M., additional, Lowery, C.M., additional, Lu, W., additional, McIntyre, A., additional, Moal-Darrigade, P., additional, Pekar, S.F., additional, Robustelli Test, C., additional, Routledge, C.M., additional, Ryan, J.G., additional, Santiago Ramos, D., additional, Shchepetkina, A., additional, Slagle, A.L., additional, Takada, M., additional, Tamborrino, L., additional, Villa, A., additional, Wang, Y., additional, Wee, S.Y., additional, Widlansky, S.J., additional, Yang, K., additional, Kurz, W., additional, Prakasam, M., additional, Tian, L., additional, Yu, T., additional, and Zhang, G., additional
- Published
- 2024
- Full Text
- View/download PDF
9. Foraminiferal analysis of Holocene sea-level rise within the Trinity River Incised Paleo-Valley, Offshore Galveston Bay, Texas
- Author
-
Standring, P., Lowery, C.M., Burstein, J., Swartz, J., Goff, J.A., Gulick, S.P.S., and Miller, C.B.
- Published
- 2024
- Full Text
- View/download PDF
10. Intense Erosive Event that Transferred Terrestrial Carbon to the Ocean Following the Cretaceous/Paleogene Boundary
- Author
-
Sosa Montes de Oca, C., primary, Witts, J., additional, Myers, C.E., additional, Lowery, C.M., additional, Garb, M.P., additional, Naujokaityte, J., additional, Landman, N.H., additional, Pietsch, C., additional, Naafs, B.D.A., additional, and Pancost, R.D., additional
- Published
- 2023
- Full Text
- View/download PDF
11. Study of fluid circulation through the chicxulub crater using Rock-Eval pyrolysis and fluid inclusions
- Author
-
Hernández-Terrones, L., primary, Martínez, L., additional, Szamotulski, J., additional, González-Partida, E., additional, Morgan, J.V., additional, Lowery, C.M., additional, Gulick, S.P.S., additional, Rebolledo-Vieyra, M., additional, and Kring, D., additional
- Published
- 2022
- Full Text
- View/download PDF
12. Early Paleocene Paleoceanography and Export Productivity in the Chicxulub Crater
- Author
-
Lowery C.M., Jones H.L., Bralower T.J., Cruz L.P., Gebhardt C., Whalen M.T., Chenot E., Smit J., Phillips M.P., Choumiline K., Arenillas I., Arz J.A., Garcia F., Ferrand M., Gulick S.P.S., Christeson G., Claeys P., Cockell C., Coolen M., Ferrière L., Goto K., Green S., Grice K., Kring D., Lofi J., Mellett C., Morgan J., Ocampo-Torres R., Pickersgill A., Poelchau M., Rae A., Rasmussen C., Rebolledo-Vieyra M., Riller U., Sato H., Schaefer B., Tikoo S., Tomioka N., Urrutia-Fucugauchi J., Wittmann A., Xiao L., Yamaguchi K., Zylberman W., Expedition 364 Science Party, Institute for Geophysics, University of Texas, University of Texas at Austin [Austin], Department of Geosciences [PennState], College of Earth and Mineral Sciences, Pennsylvania State University (Penn State), Penn State System-Penn State System-Pennsylvania State University (Penn State), Penn State System-Penn State System, Center for Marine Environmental Sciences [Bremen] (MARUM), Universität Bremen, Instituto de Geofisica [Mexico], Universidad Nacional Autónoma de México (UNAM), Alfred Wegener Institute for Polar and Marine Research (AWI), Department of Geosciences, University of Alaska [Fairbanks] (UAF), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique LaSalle Beauvais, Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Department of Earth Sciences [Riverside], University of California [Riverside] (UCR), University of California-University of California, Departamento de Ciencias de la Tierra, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Instituto Universitario en investigación en Ciencias Ambientales de Aragón (IUCA), Biogéosciences [UMR 6282] [Dijon] (BGS), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Center for Planetary Systems Habitability, University of Texas at Austin [Austin]-Jackson School of Geosciences, and Geology and Geochemistry
- Subjects
bepress|Physical Sciences and Mathematics|Earth Sciences|Paleontology ,bepress|Physical Sciences and Mathematics ,bepress|Physical Sciences and Mathematics|Earth Sciences|Sedimentology ,010506 paleontology ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,bepress|Physical Sciences and Mathematics|Earth Sciences ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,Foraminifera ,Water column ,Impact crater ,Paleoceanography ,Phytoplankton ,Photic zone ,14. Life underwater ,SDG 14 - Life Below Water ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Sedimentology ,0105 earth and related environmental sciences ,biology ,Terrigenous sediment ,Paleontology ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Geochemistry ,15. Life on land ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Paleontology ,biology.organism_classification ,humanities ,EarthArXiv|Physical Sciences and Mathematics ,Productivity (ecology) ,13. Climate action ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Environmental science ,bepress|Physical Sciences and Mathematics|Earth Sciences|Geochemistry - Abstract
The Chicxulub impact caused a crash in productivity in the world''s oceans which contributed to the extinction of ~75% of marine species. In the immediate aftermath of the extinction, export productivity was locally highly variable, with some sites, including the Chicxulub crater, recording elevated export production. The long-term transition back to more stable export productivity regimes has been poorly documented. Here, we present elemental abundances, foraminifer and calcareous nannoplankton assemblage counts, total organic carbon, and bulk carbonate carbon isotope data from the Chicxulub crater to reconstruct changes in export productivity during the first 3 Myr of the Paleocene. We show that export production was elevated for the first 320 kyr of the Paleocene, declined from 320 kyr to 1.2 Myr, and then remained low thereafter. A key interval in this long decline occurred 900 kyr to 1.2 Myr post impact, as calcareous nannoplankton assemblages began to diversify. This interval is associated with fluctuations in water column stratification and terrigenous flux, but these variables are uncorrelated to export productivity. Instead, we postulate that the turnover in the phytoplankton community from a post-extinction assemblage dominated by picoplankton (which promoted nutrient recycling in the euphotic zone) to a Paleocene pelagic community dominated by relatively larger primary producers like calcareous nannoplankton (which more efficiently removed nutrients from surface waters, leading to oligotrophy) is responsible for the decline in export production in the southern Gulf of Mexico. © 2021. American Geophysical Union. All Rights Reserved.
- Published
- 2021
- Full Text
- View/download PDF
13. Globally distributed iridium layer preserved within the Chicxulub impact structure
- Author
-
Goderis, S., Sato, H., Ferrière, L., Schmitz, B., Burney, D., Kaskes, P., Vellekoop, J., Wittmann, A., Schulz, T., Chernonozhkin, S.M., Claeys, P., de Graaff, S.J., Déhais, T., de Winter, N.J., Elfman, M., Feignon, J.-G., Ishikawa, A., Koeberl, C., Kristiansson, P., Neal, C.R., Owens, J.D., Schmieder, M., Sinnesael, M., Vanhaecke, F., van Malderen, S.J.M., Bralower, T.J., Gulick, S.P.S., Kring, D.A., Lowery, C.M., Morgan, J.V., Smit, J., Whalen, M.T., Goderis, S., Sato, H., Ferrière, L., Schmitz, B., Burney, D., Kaskes, P., Vellekoop, J., Wittmann, A., Schulz, T., Chernonozhkin, S.M., Claeys, P., de Graaff, S.J., Déhais, T., de Winter, N.J., Elfman, M., Feignon, J.-G., Ishikawa, A., Koeberl, C., Kristiansson, P., Neal, C.R., Owens, J.D., Schmieder, M., Sinnesael, M., Vanhaecke, F., van Malderen, S.J.M., Bralower, T.J., Gulick, S.P.S., Kring, D.A., Lowery, C.M., Morgan, J.V., Smit, J., and Whalen, M.T.
- Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction is marked globally by elevated concentrations of iridium, emplaced by a hypervelocity impact event 66 million years ago. Here, we report new data from four independent laboratories that reveal a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, in drill core recovered by IODP-ICDP Expedition 364. The highest concentration of ultrafine meteoritic matter occurs in the post-impact sediments that cover the crater peak ring, just below the lowermost Danian pelagic limestone. Within years to decades after the impact event, this part of the Chicxulub impact basin returned to a relatively low-energy depositional environment, recording in unprecedented detail the recovery of life during the succeeding millennia. The iridium layer provides a key temporal horizon precisely linking Chicxulub to K-Pg boundary sections worldwide.
- Published
- 2021
14. Globally distributed iridium layer preserved within the Chicxulub impact structure
- Author
-
Stratigraphy and paleontology, Stratigraphy & paleontology, Goderis, S., Sato, H., Ferrière, L., Schmitz, B., Burney, D., Kaskes, P., Vellekoop, J., Wittmann, A., Schulz, T., Chernonozhkin, S.M., Claeys, P., de Graaff, S.J., Déhais, T., de Winter, N.J., Elfman, M., Feignon, J.-G., Ishikawa, A., Koeberl, C., Kristiansson, P., Neal, C.R., Owens, J.D., Schmieder, M., Sinnesael, M., Vanhaecke, F., van Malderen, S.J.M., Bralower, T.J., Gulick, S.P.S., Kring, D.A., Lowery, C.M., Morgan, J.V., Smit, J., Whalen, M.T., Stratigraphy and paleontology, Stratigraphy & paleontology, Goderis, S., Sato, H., Ferrière, L., Schmitz, B., Burney, D., Kaskes, P., Vellekoop, J., Wittmann, A., Schulz, T., Chernonozhkin, S.M., Claeys, P., de Graaff, S.J., Déhais, T., de Winter, N.J., Elfman, M., Feignon, J.-G., Ishikawa, A., Koeberl, C., Kristiansson, P., Neal, C.R., Owens, J.D., Schmieder, M., Sinnesael, M., Vanhaecke, F., van Malderen, S.J.M., Bralower, T.J., Gulick, S.P.S., Kring, D.A., Lowery, C.M., Morgan, J.V., Smit, J., and Whalen, M.T.
- Published
- 2021
15. The Habitat of the Nascent Chicxulub Crater
- Author
-
Bralower, T, Cosmidis, J, Fantle, M.S., Lowery, C.M., Passey, B.H., Gulick, S.P.S., Morgan, J.V., Vajda, Vivi, Whalen, M.T., Wittmann, A., Artemieva, N., Farley, K., Goderis, S., Hajek, E., Heaney, P.J., Kring, D.A., Lyons, S.L., Rasmussen, C., Sibert, E., Rodríguez Tovar, F.J., Turner-Walker, G., Zachos, J.C., Carte, J., Chen, S.A., Cockell, C., Coolen, M., Freeman, K.H., Garber, J., Gonzalez, M., Gray, J.L., Grice, K., Jones, H.L., Schaefer, B., Smit, J., Tikoo, S.M., Bralower, T, Cosmidis, J, Fantle, M.S., Lowery, C.M., Passey, B.H., Gulick, S.P.S., Morgan, J.V., Vajda, Vivi, Whalen, M.T., Wittmann, A., Artemieva, N., Farley, K., Goderis, S., Hajek, E., Heaney, P.J., Kring, D.A., Lyons, S.L., Rasmussen, C., Sibert, E., Rodríguez Tovar, F.J., Turner-Walker, G., Zachos, J.C., Carte, J., Chen, S.A., Cockell, C., Coolen, M., Freeman, K.H., Garber, J., Gonzalez, M., Gray, J.L., Grice, K., Jones, H.L., Schaefer, B., Smit, J., and Tikoo, S.M.
- Abstract
An expanded sedimentary section provides an opportunity to elucidate conditions in the nascent Chicxulub crater during the hours to millennia after the Cretaceous‐Paleogene (K‐Pg) boundary impact. The sediments were deposited by tsunami followed by seiche waves as energy in the crater declined, culminating in a thin hemipelagic marlstone unit that contains atmospheric fallout. Seiche deposits are predominantly composed of calcite formed by decarbonation of the target limestone during impact followed by carbonation in the water column. Temperatures recorded by clumped isotopes of these carbonates are in excess of 70°C, with heat likely derived from the central impact melt pool. Yet, despite the turbidity and heat, waters within the nascent crater basin soon became a viable habitat for a remarkably diverse cross section of the food chain. The earliest seiche layers deposited with days or weeks of the impact contain earliest Danian nannoplankton and dinocyst survivors. The hemipelagic marlstone representing the subsequent years to a few millennia contains a nearly monogeneric calcareous dinoflagellate resting cyst assemblage suggesting deteriorating environmental conditions, with one interpretation involving low light levels in the impact aftermath. At the same horizon, microbial fossils indicate a thriving bacterial community and unique phosphatic fossils including appendages of pelagic crustaceans, coprolites andbacteria‐tunneled fish bone, suggesting that this rapid recovery of the base of the food chain may have supported the survival of larger, higher trophic‐level organisms. The extraordinarily diverse fossil assemblage indicates that the crater was a unique habitat in the immediate impact aftermath, possibly as aresult of heat and nutrients supplied by hydrothermal activity.
- Published
- 2020
- Full Text
- View/download PDF
16. Microbial life in the nascent Chicxulub crater
- Author
-
Schaefer, B., Grice, Kliti, Coolen, Marco, Summons, R.E., Cui, X., Bauersachs, T., Schwark, Lorenz, Böttcher, M.E., Bralower, T.J., Lyons, S.L., Freeman, K.H., Cockell, C.S., Gulick, S.P.S., Morgan, J.V., Whalen, M.T., Lowery, C.M., Vajda, V., Schaefer, B., Grice, Kliti, Coolen, Marco, Summons, R.E., Cui, X., Bauersachs, T., Schwark, Lorenz, Böttcher, M.E., Bralower, T.J., Lyons, S.L., Freeman, K.H., Cockell, C.S., Gulick, S.P.S., Morgan, J.V., Whalen, M.T., Lowery, C.M., and Vajda, V.
- Abstract
The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world's oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater.
- Published
- 2020
17. Life and death in the Chicxulub impact crater: A record of the Paleocene-Eocene Thermal Maximum
- Author
-
Smith, V., Warny, S., Grice, Kliti, Schaefer, Bettina, Whalen, M.T., Vellekoop, J., Chenot, E., Gulick, S.P.S., Arenillas, I., Arz, J.A., Bauersachs, T., Bralower, T., Demory, F., Gattacceca, J., Jones, H., Lofi, J., Lowery, C.M., Morgan, J., Nuñez Otaño, N.B., O'Keefe, J.M.K., O'Malley, K., Rodríguez-Tovar, F.J., Schwark, Lorenz, Smith, V., Warny, S., Grice, Kliti, Schaefer, Bettina, Whalen, M.T., Vellekoop, J., Chenot, E., Gulick, S.P.S., Arenillas, I., Arz, J.A., Bauersachs, T., Bralower, T., Demory, F., Gattacceca, J., Jones, H., Lofi, J., Lowery, C.M., Morgan, J., Nuñez Otaño, N.B., O'Keefe, J.M.K., O'Malley, K., Rodríguez-Tovar, F.J., and Schwark, Lorenz
- Abstract
Thermal stress on the biosphere during the extreme warmth of the Paleocene-Eocene Thermal Maximum (PETM) was most severe at low latitudes, with sea surface temperatures at some localities exceeding the 35 C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new record of the PETM from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEXH 86-based sea surface temperatures (SSTs) averaging 37:8 C, an in- crease in terrestrial input and surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from Mexico, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest with a remarkably high abundance of fungal spores, indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived.
- Published
- 2020
18. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G.L., Gulick, S.P.S., Morgan, J.V., Gebhardt, Catalina, Kring, D.A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A.S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D.R., Wittmann, A., Bralower, T.J., Chenot, E., Claeys, P., Cockell, C.S., Coolen, M.J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C.M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A.E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S.M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M.T., Xiao, L., Yamaguchi, K.E., Christeson, G.L., Gulick, S.P.S., Morgan, J.V., Gebhardt, Catalina, Kring, D.A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A.S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D.R., Wittmann, A., Bralower, T.J., Chenot, E., Claeys, P., Cockell, C.S., Coolen, M.J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C.M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A.E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S.M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M.T., Xiao, L., and Yamaguchi, K.E.
- Abstract
Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevit
- Published
- 2018
19. Quantifying the Release of Climate‐Active Gases by Large Meteorite Impacts With a Case Study of Chicxulub
- Author
-
Artemieva , Natalia, Morgan , Joanna, Gulick , S.P.S., Chenot , E., Christeson , G.L., Claeys , P., Cockell , C.S., Coolen , M.J.L., Ferrière , L., Gebhardt , C., Goto , K., Green , S., Jones , H., Kring , D.A., Lofi , J., Lowery , C.M., Ocampo-Torres , R., Perez-Cruz , L., Pickersgill , A.E., Poelchau , M., Rae , A.S.P., Rasmussen , C., Rebolledo-Vieyra , M., Riller , U., Sato , H., Smit , J., Tikoo , S.M., Tomioka , N., Urrutia-Fucugauchi , J., Whalen , M.T., Wittmann , A., Xiao , L., Yamaguchi , K.E., Zylberman , W., Collins , G.S., Bralower , T.J., Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Géosciences Montpellier, Université des Antilles et de la Guyane ( UAG ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de chimie et procédés pour l'énergie, l'environnement et la santé ( ICPEES ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ) -Matériaux et nanosciences d'Alsace, Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Funding from the International Ocean Discovery Program (IODP), the International Continental scientific Drilling Project (ICDP), NASA grant 15-EXO15_2-0054 and NERC grant NE/P005217/1., Natural Environment Research Council (NERC), The Leverhulme Trust, Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Earth science ,Potentially hazardous object ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Sediment ,[ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Shock (mechanics) ,Water depth ,Geophysics ,Meteorite ,Volume (thermodynamics) ,13. Climate action ,Meteorology & Atmospheric Sciences ,General Earth and Planetary Sciences ,Sedimentary rock ,Porosity ,Geology ,0105 earth and related environmental sciences - Abstract
9 pages; International audience; Potentially hazardous asteroids and comets have hit Earth throughout its history, with catastrophic consequences in the case of the Chicxulub impact. Here we reexamine one of the mechanisms that allow an impact to have a global effect—the release of climate-active gases from sedimentary rocks. We use the SOVA hydrocode and model ejected materials for a sufficient time after impact to quantify the volume of gases that reach high enough altitudes (> 25 km) to have global consequences. We vary impact angle, sediment thickness and porosity, water depth, and shock pressure for devolatilization and present the results in a dimensionless form so that the released gases can be estimated for any impact into a sedimentary target. Using new constraints on the Chicxulub impact angle and target composition, we estimate that 325 ± 130 Gt of sulfur and 425 ± 160 Gt CO2 were ejected and produced severe changes to the global climate.
- Published
- 2017
- Full Text
- View/download PDF
20. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G.L., primary, Gulick, S.P.S., additional, Morgan, J.V., additional, Gebhardt, C., additional, Kring, D.A., additional, Le Ber, E., additional, Lofi, J., additional, Nixon, C., additional, Poelchau, M., additional, Rae, A.S.P., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Schmitt, D.R., additional, Wittmann, A., additional, Bralower, T.J., additional, Chenot, E., additional, Claeys, P., additional, Cockell, C.S., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Green, S., additional, Goto, K., additional, Jones, H., additional, Lowery, C.M., additional, Mellett, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Rasmussen, C., additional, Sato, H., additional, Smit, J., additional, Tikoo, S.M., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M.T., additional, Xiao, L., additional, and Yamaguchi, K.E., additional
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.