4 results on '"Loustau-Dudez AM"'
Search Results
2. Meiotic pairing and gene expression disturbance in germ cells from an infertile boar with a balanced reciprocal autosome-autosome translocation.
- Author
-
Barasc H, Congras A, Mary N, Trouilh L, Marquet V, Ferchaud S, Raymond-Letron I, Calgaro A, Loustau-Dudez AM, Mouney-Bonnet N, Acloque H, Ducos A, and Pinton A
- Subjects
- Animals, Gene Expression, Infertility, Male genetics, Male, Sex Chromosome Aberrations, Spermatozoa, Sus scrofa, Testis, X Chromosome genetics, Chromosome Pairing, Meiosis genetics, Spermatocytes metabolism, Translocation, Genetic
- Abstract
Individuals carrying balanced constitutional reciprocal translocations generally have a normal phenotype, but often present reproductive disorders. The aim of our research was to analyze the meiotic process in an oligoasthenoteratospermic boar carrying an asymmetric reciprocal translocation involving chromosomes 1 and 14. Different multivalent structures (quadrivalent and trivalent plus univalent) were identified during chromosome pairing analysis. Some of these multivalents were characterized by the presence of unpaired autosomal segments with histone γH2AX accumulation sometimes associated with the XY body. Gene expression in spermatocytes was studied by RNA-DNA-FISH and microarray-based testis transcriptome analysis. Our results revealed a decrease in gene expression for chromosomes 1 and 14 and an up-regulated expression of X-chromosome genes for the translocated boar compared with normal individuals. We hypothesized that the observed meiotic arrest and reproductive failure in this boar might be due to silencing of crucial autosomal genes (MSUC) and disturbance of meiotic sex chromosome inactivation (MSCI). Further analysis revealed abnormal meiotic recombination (frequency and distribution) and the production of a high rate of unbalanced spermatozoa., Competing Interests: Compliance with ethical standards Ethical standards According to the European Directive 2010/63/EU on the protection of animals used for scientific purposes, the procedure for testes collection was accepted by the Ethics Committee for Animal Experimentation of the Poitou Charentes region (France) (CE2012-2), under the agreement number A-17-661. Conflict of interest The authors declare that they have no conflict of interest.
- Published
- 2016
- Full Text
- View/download PDF
3. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements.
- Author
-
Mary N, Barasc H, Ferchaud S, Priet A, Calgaro A, Loustau-Dudez AM, Bonnet N, Yerle M, Ducos A, and Pinton A
- Subjects
- Animals, Crossing Over, Genetic genetics, DNA Breaks, Double-Stranded, DNA Repair genetics, In Situ Hybridization, Fluorescence, Male, Sister Chromatid Exchange genetics, Swine, Chromosome Inversion genetics, Chromosome Inversion veterinary, Chromosome Pairing physiology, Meiosis genetics, MutL Protein Homolog 1 genetics, Sus scrofa genetics, Translocation, Genetic genetics
- Abstract
Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.
- Published
- 2016
- Full Text
- View/download PDF
4. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica).
- Author
-
Mary N, Barasc H, Ferchaud S, Billon Y, Meslier F, Robelin D, Calgaro A, Loustau-Dudez AM, Bonnet N, Yerle M, Acloque H, Ducos A, and Pinton A
- Subjects
- Animals, Male, Chromosomes, Meiosis, Recombination, Genetic, Swine genetics
- Abstract
For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes) were identified by immunostaining and fluorescence in situ hybridization (FISH). The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers), on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells) and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18) and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.