Regan SP, Goncharov VN, Igumenshchev IV, Sangster TC, Betti R, Bose A, Boehly TR, Bonino MJ, Campbell EM, Cao D, Collins TJ, Craxton RS, Davis AK, Delettrez JA, Edgell DH, Epstein R, Forrest CJ, Frenje JA, Froula DH, Gatu Johnson M, Glebov VY, Harding DR, Hohenberger M, Hu SX, Jacobs-Perkins D, Janezic R, Karasik M, Keck RL, Kelly JH, Kessler TJ, Knauer JP, Kosc TZ, Loucks SJ, Marozas JA, Marshall FJ, McCrory RL, McKenty PW, Meyerhofer DD, Michel DT, Myatt JF, Obenschain SP, Petrasso RD, Radha PB, Rice B, Rosenberg MJ, Schmitt AJ, Schmitt MJ, Seka W, Shmayda WT, Shoup MJ, Shvydky A, Skupsky S, Solodov AA, Stoeckl C, Theobald W, Ulreich J, Wittman MD, Woo KM, Yaakobi B, and Zuegel JD
A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.