1. Convergence analysis of a primal-dual optimization-by-continuation algorithm
- Author
-
Loris, Ignace and Rebegoldi, Simone
- Subjects
Mathematics - Optimization and Control ,Mathematics - Numerical Analysis ,90C06, 90C25, 90C59, 90C90, 49M29, 65K10 - Abstract
We present a numerical iterative optimization algorithm for the minimization of a cost function consisting of a linear combination of three convex terms, one of which is differentiable, a second one is prox-simple and the third one is the composition of a linear map and a prox-simple function. The algorithm's special feature lies in its ability to approximate, in a single iteration run, the minimizers of the cost function for many different values of the parameters determining the relative weight of the three terms in the cost function. A proof of convergence of the algorithm, based on an inexact variable metric approach, is also provided. As a special case, one recovers a generalization of the primal-dual algorithm of Chambolle and Pock, and also of the proximal-gradient algorithm. Finally, we show how it is related to a primal-dual iterative algorithm based on inexact proximal evaluations of the non-smooth terms of the cost function., Comment: 32 pages, 7 figures
- Published
- 2023
- Full Text
- View/download PDF