6 results on '"Logic-based systems"'
Search Results
2. ASBO: Argumentation System Based on Ontologies
- Author
-
Muñoz, Andrés, Botía, Juan A., Carbonell, Jaime G., editor, Siekmann, J\'org, editor, Klusch, Matthias, editor, Pěchouček, Michal, editor, and Polleres, Axel, editor
- Published
- 2008
- Full Text
- View/download PDF
3. Une approche basée sur les préférences pour l'éthique des machines dans le contexte de la planification automatique
- Author
-
Jedwabny, Martin, Jedwabny, Martin, Représentation de Connaissances et Langages à Base de Règles pour Raisonner sur les Données (BOREAL), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Université de Montpellier (UM), Université de Montpellier, and Madalina Croitoru
- Subjects
Logique ,Logic ,Logic-based systems ,Apprentissage automatique ,[INFO] Computer Science [cs] ,Automated planning ,Programmation logique probabiliste ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Probabilistic logic programming ,Éthique des machines ,Planification automatique ,Machine learning ,Machine ethics ,Ethique des machines ,AI planning - Abstract
Machine ethics is an uprising sub-field of artificial intelligence fueled by the interest and concerns about the deployment of automated agents in our everyday life. As these agents gain independence from human intervention and make decisions with possible impact on human welfare, real concerns are rising across domains.Due to those reasons, various approaches have been proposed to imbue automated agents with ethical considerations. Several research currents have developed models stemming from psychology and philosophy in an effort to adapt decision-making algorithms to consider ethical values so that the impact of agents on people is bounded and guided by these notions.Most of these approaches consist of either reasoning and applying a set of well-known ethical restrictions, also known as principles (top-down), or inferring them based on carefully crafted datasets through learning algorithms (bottom-up).In this thesis, we look at the problem of implementing these ethical principles in the context of tasks involving sequences of interdependent decisions, i.e: automated planning. We show how certain notions can be modeled using preference-based frameworks, as in top-down approaches, and how these preferences can be inferred from a corpus of data like bottom-up methodologies, to develop a hybrid approach that can be applied to planning problems. An implementation for each facet of our approach is provided in order to test our ideas in practical scenarios., L'éthique des machines est un sous-domaine en plein essor de l'intelligence artificielle qui suscite intérêt et inquiétudes, en particulier en ce qui concerne le déploiement d'agents automatisés dansnotre vie quotidienne. À mesure que ces agents gagnent en indépendance vis-à-vis de l'intervention humaine et prennent des décisions susceptibles d'avoir un impact sur le bien-être humain, de réelles inquiétudes appraissent dans plusieurs domaines.Pour ces raisons, diverses approches ont été proposées pour apporter les agents automatisés de considérations éthiques. Plusieurs courants de recherche ont développé des modèles issus de la psychologie et de la philosophie dans le but d'adapter les algorithmes de prise de décision pour tenir compte des valeurs éthiques afin que l'impact des agents sur les personnes soit délimité et guidé par ces notions.La plupart de ces approches consistent soit à raisonner et à appliquer un ensemble de restrictions éthiques bien connues, également appelées principes (top-down), soit à les inférer sur la base d'ensembles de données soigneusement élaborés grâce à des algorithmes d'apprentissage (bottom-up).Dans cette thèse, nous examinons la mise en œuvre de ces principes éthiques dans le contexte de problèmes impliquant des séquences de décisions, c'est-à-dire : la planification automatique. Nous montrons comment certaines notions peuvent être modélisées à l'aide de cadres formels basés sur les préférences, comme dans les approches `top-down', et comment ces préférences peuvent être déduites d'un corpus de données comme les méthodologies `bottom-up', pour développer une approche hybride applicable à la planification automatique. Un logiciel pour chaque facette de notre approche est fournie afin de tester nos idées sur des scénarios pratiques.
- Published
- 2022
4. Knowledge discovery in social networks by using a logic-based treatment of implications.
- Author
-
Cordero, Pablo, Enciso, Manuel, Mora, Angel, Ojeda-Aciego, Manuel, and Rossi, Carlos
- Subjects
- *
SOCIAL networks , *INTERNET users , *COMPUTER simulation , *PROGRAMMING languages , *ARTIFICIAL intelligence - Abstract
This work can be seen as a contribution to the area of social network analysis. By considering Formal Concept Analysis (FCA) as the underlying formalizing tool, we use logic-based techniques in order to offer novel solutions to identify user’s influence in a social network. We propose the use of the Simplification Logic SL FD for attribute implications as the core of an automated method to build a structure containing the complete set of influences among users. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
5. Qualitative Comparison of Graph-Based and Logic-Based Multi-Relational Data Mining: A Case Study
- Author
-
TEXAS UNIV AT ARLINGTON, Ketkar, Nikhil S., Holder, Lawrence B., Cook, Diane J., TEXAS UNIV AT ARLINGTON, Ketkar, Nikhil S., Holder, Lawrence B., and Cook, Diane J.
- Abstract
The goal of this paper is to generate insights about the differences between graph-based and logic-based approaches to multi-relational data mining by performing a case study of the graph-based system, Subdue and the inductive logic programming system, CProgol. We identify three key factors for comparing graph-based and logic-based multi-relational data mining; namely, the ability to discover structurally large concepts, the ability to discover semantically complicated concepts and the ability to effectively utilize background knowledge. We perform an experimental comparison of Subdue and CProgol on the Mutagenesis domain and various artificially generated Bongard problems. Experimental results indicate that Subdue can significantly outperform CProgol while discovering structurally large multi-relational concepts. It is also observed that CProgol is better at learning semantically complicated concepts and it tends to use background knowledge more effectively than Subdue., Presented at the International Workshop on Multi-Relational Data Mining (4th) (MRDM-2005) held in Chicago, IL on 21 Aug 2005. Published in the Proceedings of the International Workshop on Multi-Relational Data Mining (4th), 2005.
- Published
- 2005
6. Comparison of Graph-Based and Logic-Based Multi-Relational Data Mining
- Author
-
TEXAS UNIV AT ARLINGTON, Ketkar, Nikhil S., Holder, Lawrence B., Cook, Diane J., TEXAS UNIV AT ARLINGTON, Ketkar, Nikhil S., Holder, Lawrence B., and Cook, Diane J.
- Abstract
We perform an experimental comparison of the graph-based multi-relational data mining system, Subdue, and the inductive logic programming system, CProgol, on the Mutagenesis dataset and various artificially generated Bongard problems. Experimental results indicate that Subdue can significantly outperform CProgol while discovering structurally large multi-relational concepts. It is also observed that CProgol is better at learning semantically complicated concepts and it tends to use background knowledge more effectively than Subdue. An analysis of the results indicates that the differences in the performance of the systems are a result of the difference in the expressiveness of the logic-based and the graph-based representations. The ability of graph-based systems to learn structurally large concepts comes from the use of a weaker representation whose expressiveness is intermediate between propositional and first-order logic. The use of this weaker representation is advantageous while learning structurally large concepts but it limits the learning of semantically complicated concepts and the utilization background knowledge., Published in SIGKDD Explorations, v7 n2 p64-71, Dec 2005.
- Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.