Model-based approaches to the verification of non-terminating Cyber-Physical Systems (CPSs) usually rely on numerical simulation of the System Under Verification (SUV) model under input scenarios of possibly varying duration, chosen among those satisfying given constraints. Such constraints typically stem from requirements (or assumptions) on the SUV inputs and its operational environment as well as from the enforcement of additional conditions aiming at, e.g., prioritising the (often extremely long) verification activity, by, e.g., focusing on scenarios explicitly exercising selected requirements, or avoiding vacuity in their satisfaction. In this setting, the possibility to efficiently sample at random (with a known distribution, e.g., uniformly) within, or to efficiently enumerate (possibly in a uniformly random order) scenarios among those satisfying the given constraints is a key enabler for the viability of the verification process, e.g., via simulation-based statistical model checking. Unfortunately, in case of non-trivial combinations of constraints, iterative approaches like Markovian random walks in the space of sequences of inputs in general fail in extracting scenarios according to a given distribution, and can be very inefficient to produce legal scenarios of interest. We show how, given a set of constraints on the input scenarios succinctly defined by finite memory monitors, a data structure (scenario generator) can be synthesised, from which any-horizon scenarios satisfying the input constraints can be efficiently extracted by (possibly uniform) random sampling or (randomised) enumeration. Our approach enables seamless support to virtually all simulation-based approaches to CPS verification, ranging from simple random testing to statistical model checking and formal (i.e., exhaustive) verification., Comment: 14 pages. IEEE Transactions on Software Engineering, 2021