1. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems.
- Author
-
Denoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, Hervé C, Ye N, Bapteste E, Valero M, Markov GV, Corre E, Coelho SM, Wincker P, Aury JM, and Cock JM
- Subjects
- Gene Transfer, Horizontal, Genome genetics, Phaeophyceae genetics, Ecosystem, Phylogeny, Genomics, Evolution, Molecular
- Abstract
Brown seaweeds are keystone species of coastal ecosystems, often forming extensive underwater forests, and are under considerable threat from climate change. In this study, analysis of multiple genomes has provided insights across the entire evolutionary history of this lineage, from initial emergence, through later diversification of the brown algal orders, down to microevolutionary events at the genus level. Emergence of the brown algal lineage was associated with a marked gain of new orthologous gene families, enhanced protein domain rearrangement, increased horizontal gene transfer events, and the acquisition of novel signaling molecules and key metabolic pathways, the latter notably related to biosynthesis of the alginate-based extracellular matrix, and halogen and phlorotannin biosynthesis. We show that brown algal genome diversification is tightly linked to phenotypic divergence, including changes in life cycle strategy and zoid flagellar structure. The study also showed that integration of large viral genomes has had a significant impact on brown algal genome content throughout the emergence of the lineage., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF