1. Driven Critical Dynamics in Measurement-induced Phase Transitions
- Author
-
Wang, Wantao, Liu, Shuo, Li, Jiaqiang, Zhang, Shi-Xin, and Yin, Shuai
- Subjects
Quantum Physics ,Condensed Matter - Statistical Mechanics ,Condensed Matter - Strongly Correlated Electrons - Abstract
Measurement-induced phase transitions (MIPT), characterizing abrupt changes in entanglement properties in quantum many-body systems subjected to unitary evolution with interspersed projective measurements, have garnered increasing interest. In this work, we generalize the Kibble-Zurek (KZ) driven critical dynamics that has achieved great success in traditional quantum and classical phase transitions to MIPT. By linearly changing the measurement probability $p$ to cross the critical point $p_c$ with driving velocity $R$, we identify the dynamic scaling relation of the entanglement entropy $S$ versus $R$ at $p_c$. For decreasing $p$ from the area-law phase, $S$ satisfies $S\propto \ln R$; while for increasing $p$ from the volume-law phase, $S$ satisfies $S\propto R^{1/r}$ in which $r=z+1/\nu$ with $z$ and $\nu$ being the dynamic and correlation length exponents, respectively. Moreover, we find that the driven dynamics from the volume-law phase violates the adiabatic-impulse scenario of the KZ mechanism. In spite of this, a unified finite-time scaling (FTS) form can be developed to describe these scaling behaviors. Besides, the dynamic scaling of the entanglement entropy of an auxiliary qubit $S_Q$ is also investigated to further confirm the universality of the FTS form. By successfully establishing the driven dynamic scaling theory of this newfashioned entanglement transition, we bring a new fundamental perspective into MIPT that can be detected in fast-developing quantum computers., Comment: 6+6 pages
- Published
- 2024