19 results on '"Litsios G"'
Search Results
2. Molecular substitution rate increases in myrmecophilous lycaenid butterflies (Lepidoptera)
- Author
-
Pellissier L Litsios G Guisan A Alvarez N
- Abstract
Is species diversification driven by neutral or niche based processes? Butterflies of the Lycaenidae family have developed mutualistic interactions with ants. This biotic requirement increased the spatial fragmentation of populations of lower effective population size (Ne) compared with autonomous species. The nearly neutral theory predicts that species with smaller Ne should fix more mutations because of the increased strength of drift. Taking into account the phylogenetic relatedness among species this study shows that species with a stronger dependence on ants displayed more intra specific Single Nucleotide Polymorphisms compared with species with low or no myrmecophily. This phenomenon can cause more pronounced genetic differentiation between populations and could ultimately promote speciation in a similar manner as on physical islands. The large species diversity observed in this family could be the consequence of this neutral process enhancing the diversification of lineages.
- Published
- 2013
- Full Text
- View/download PDF
3. The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases
- Author
-
Bultet, LA, Aguilar-Rodriguez, J, Ahrens, CH, Ahrne, EL, Ai, N, Aimo, L, Akalin, A, Aleksiev, T, Alocci, D, Altenhoff, A, Alves, I, Ambrosini, G, Pedone, PA, Angelina, P, Anisimova, M, Appel, R, Argoud-Puy, G, Arnold, K, Arpat, B, Artimo, P, Ascencao, K, Auchincloss, A, Axelsen, K, Gerritsen, VB, Bairoch, A, Barisal, P, Baratin, D, Barbato, A, Barbie, V, Barras, D, Barreiro, M, Barret, S, Bastian, F, Batista Neto, TM, Baudis, M, Beaudoing, E, Beckmann, JS, Bekkar, AK, Cammoun, LBH, Benmohammed, S, Bernard, M, Bertelli, C, Bertoni, M, Bienert, S, Bignucolo, O, Bilbao, A, Bilican, A, Blank, D, Blatter, M-C, Blum, L, Bocquet, J, Boeckmann, B, Bolleman, JT, Bordoli, L, Bosshard, L, Boucher, G, Bougueleret, L, Boutet, E, Bovigny, C, Bratulic, S, Breuza, L, Bridge, AJ, Britan, A, Brito, F, Frazao, JB, Bruggmann, R, Bucher, P, Burdet, F, Burger, L, Cabello, EM, Gomez, RMC, Calderon, S, Cannarozzi, G, Carl, S, Casas, CC, Catherinet, S, Perier, RC, Charpilloz, C, Chaskar, PD, Chen, W, Pepe, AC, Chopard, B, Chu, HY, Civic, N, Claassen, M, Clottu, S, Colombo, M, Cosandier, I, Coudert, E, Crespo, I, Creus, M, Cuche, B, Cuendet, MA, Cusin, I, Daga, N, Daina, A, Dauvillier, J, David, F, Davydov, I, Ferreira, MDSRM, de Beer, T, de Castro, E, de Santana, C, Delafontaine, J, Delorenzi, M, Delucinge-Vivier, C, Demirel, O, Derham, R, Dermitzakis, EM, Dib, L, Diene, S, Dilek, N, Dilmi, J, Domagalski, MJ, Dorier, J, Dornevil, D, Dousse, A, Dreos, R, Duchen, P, Roggli, PD, Duperret, ID, Durinx, C, Duvaud, S, Engler, R, Frkek, S, Lopez, PE, Fstreicher, A, Excoffier, L, Fabbretti, R, Falcone, J-L, Falquet, L, Famiglietti, ML, Ferreira, A-M, Feuermann, M, Filliettaz, M, Hegel, V, Foucal, A, Franceschini, A, Fucile, G, Gaidatzis, D, Garcia, V, Gasteiger, E, Gateau, A, Gatti, L, Gaudet, P, Gaudinat, A, Gehant, S, Gfeller, D, Gharib, WH, Ghraichy, M, Gidoin, C, Gil, M, Gleizes, A, Gobeill, J, Gonnet, G, Gos, A, Gotz, L, Gouy, A, Grbic, D, Groux, R, Gruaz-Gumowski, N, Grun, D, Gschwind, A, Guex, N, Gupta, S, Getaz, M, Haake, D, Haas, J, Hatzimanikatis, V, Heckel, G, Gardiol, DFH, Hinard, V, Hinz, U, Homicsko, K, Horlacher, O, Hosseini, S-R, Hotz, H-R, Hulo, C, Hundsrucker, C, Ibberson, M, Ilmjarv, S, Ioannidis, V, Ioannidis, P, Iseli, C, Ivanek, R, Iwaszkiewicz, J, Jacquet, P, Jacquot, M, Jagannathan, V, Jan, M, Jensen, J, Johansson, MU, Johner, N, Jungo, F, Junier, T, Kahraman, A, Katsantoni, M, Keller, G, Kerhornou, A, Khalid, F, Klingbiel, D, Kimljenovic, A, Kriventseva, E, Kryuchkova, N, Kumar, S, Kutalik, Z, Kuznetsov, D, Kuzyakiv, R, Lane, L, Lara, V, Ledesma, L, Leleu, M, Lemercier, P, Lew, D, Lieberherr, D, Liechti, R, Lisacek, F, Fischer, H, Litsios, G, Liu, J, Lombardot, T, Mace, A, Maffioletti, S, Mahi, M-A, Maiolo, M, Majjigapu, SR, Malmstrom, L, Mangold, V, Marek, D, Mariethoz, J, Marin, R, Martin, O, Martin, X, Martin-Campos, T, Mary, C, Masclaux, F, Masson, P, Meier, C, Messina, A, Lenoir, MM, Meyer, X, Michel, P-A, Michielin, O, Milanese, A, Missiaglia, E, Perez, JM, Caria, VM, Moret, P, Moretti, S, Morgat, A, Mottaz, A, Mottin, L, Mouscaz, Y, Mueller, M, Murri, R, Mylonas, R, Neuenschwander, S, Nikitin, F, Niknejad, A, Nouspikel, N, Nso, LN, Okoniewski, M, Omasits, U, Paccaud, B, Pachkov, M, Paesano, SG, Pagni, M, Palagi, PM, Pasche, E, Payne, JL, Pedruzzi, I, Peischl, S, Peitsch, M, Perlini, S, Pilbout, S, Podvinec, M, Pohlmann, R, Polizzi, D, Potter, D, Poux, S, Pozzato, M, Pradervand, S, Praz, V, Pruess, M, Pujadas, E, Racle, J, Raschi, M, Ratib, O, Rausell, A, de Laval, VR, Redaschi, N, Rempfer, C, Ren, G, Vandati, RAR, Rib, L, Grognuz, OR, Altimiras, ER, Rivoire, C, Robin, T, Robinson-Rechavi, M, Rodrigues, J, Roechert, B, Roelli, P, Romano, V, Rossier, G, Roth, A, Rougemont, J, Roux, J, Royo, H, Ruch, P, Ruinelli, M, Rustom, M, Sates, A, Roehrig, UF, Rueeger, S, Salamin, N, Sankar, M, Sarkar, N, Saxenhofer, M, Schaeffer, M, Schaerli, Y, Schaper, E, Schmid, A, Schmid, E, Schmid, C, Schmid, M, Schmidt, S, Schmocker, D, Schneider, M, Schuepbach, T, Schwede, T, Schuetz, F, Sengstag, T, Serrano, M, Sethi, A, Shahmirzadi, O, Sigrist, C, Silvestro, D, Simao Neto, FA, Simillion, C, Simonovic, M, Skunca, N, Sluzek, K, Soneson, C, Sprouffske, K, Stadler, M, Staehli, S, Stevenson, B, Stockinger, H, Straszewski, J, Stricker, T, Studer, G, Stutz, A, Suffiotti, M, Sundaram, S, Szklarczyk, D, Szovenyi, P, Tegenfeldt, F, Teixeira, D, Tellenbach, S, Smith, AAT, Tognolli, M, Topolsky, I, Thuong, VDT, Tsantoulis, P, Tzika, AC, Agote, AU, van Nimwegen, E, von Mering, C, Varadarajan, A, Veranneman, M, Verbregue, L, Veuthey, A-L, Vishnyakova, D, Vyas, R, Wagner, A, Walther, D, Wan, HW, Wang, M, Waterhouse, R, Waterhouse, A, Wicki, A, Wigger, L, Wirapati, P, Witschi, U, Wyder, S, Wyler, K, Wuethrich, D, Xenarios, I, Yamada, K, Yan, Z, Yasrebi, H, Zahn, M, Zangger, N, Zdobnov, E, Zerzion, D, Zoete, V, Zoller, S, Bultet, LA, Aguilar-Rodriguez, J, Ahrens, CH, Ahrne, EL, Ai, N, Aimo, L, Akalin, A, Aleksiev, T, Alocci, D, Altenhoff, A, Alves, I, Ambrosini, G, Pedone, PA, Angelina, P, Anisimova, M, Appel, R, Argoud-Puy, G, Arnold, K, Arpat, B, Artimo, P, Ascencao, K, Auchincloss, A, Axelsen, K, Gerritsen, VB, Bairoch, A, Barisal, P, Baratin, D, Barbato, A, Barbie, V, Barras, D, Barreiro, M, Barret, S, Bastian, F, Batista Neto, TM, Baudis, M, Beaudoing, E, Beckmann, JS, Bekkar, AK, Cammoun, LBH, Benmohammed, S, Bernard, M, Bertelli, C, Bertoni, M, Bienert, S, Bignucolo, O, Bilbao, A, Bilican, A, Blank, D, Blatter, M-C, Blum, L, Bocquet, J, Boeckmann, B, Bolleman, JT, Bordoli, L, Bosshard, L, Boucher, G, Bougueleret, L, Boutet, E, Bovigny, C, Bratulic, S, Breuza, L, Bridge, AJ, Britan, A, Brito, F, Frazao, JB, Bruggmann, R, Bucher, P, Burdet, F, Burger, L, Cabello, EM, Gomez, RMC, Calderon, S, Cannarozzi, G, Carl, S, Casas, CC, Catherinet, S, Perier, RC, Charpilloz, C, Chaskar, PD, Chen, W, Pepe, AC, Chopard, B, Chu, HY, Civic, N, Claassen, M, Clottu, S, Colombo, M, Cosandier, I, Coudert, E, Crespo, I, Creus, M, Cuche, B, Cuendet, MA, Cusin, I, Daga, N, Daina, A, Dauvillier, J, David, F, Davydov, I, Ferreira, MDSRM, de Beer, T, de Castro, E, de Santana, C, Delafontaine, J, Delorenzi, M, Delucinge-Vivier, C, Demirel, O, Derham, R, Dermitzakis, EM, Dib, L, Diene, S, Dilek, N, Dilmi, J, Domagalski, MJ, Dorier, J, Dornevil, D, Dousse, A, Dreos, R, Duchen, P, Roggli, PD, Duperret, ID, Durinx, C, Duvaud, S, Engler, R, Frkek, S, Lopez, PE, Fstreicher, A, Excoffier, L, Fabbretti, R, Falcone, J-L, Falquet, L, Famiglietti, ML, Ferreira, A-M, Feuermann, M, Filliettaz, M, Hegel, V, Foucal, A, Franceschini, A, Fucile, G, Gaidatzis, D, Garcia, V, Gasteiger, E, Gateau, A, Gatti, L, Gaudet, P, Gaudinat, A, Gehant, S, Gfeller, D, Gharib, WH, Ghraichy, M, Gidoin, C, Gil, M, Gleizes, A, Gobeill, J, Gonnet, G, Gos, A, Gotz, L, Gouy, A, Grbic, D, Groux, R, Gruaz-Gumowski, N, Grun, D, Gschwind, A, Guex, N, Gupta, S, Getaz, M, Haake, D, Haas, J, Hatzimanikatis, V, Heckel, G, Gardiol, DFH, Hinard, V, Hinz, U, Homicsko, K, Horlacher, O, Hosseini, S-R, Hotz, H-R, Hulo, C, Hundsrucker, C, Ibberson, M, Ilmjarv, S, Ioannidis, V, Ioannidis, P, Iseli, C, Ivanek, R, Iwaszkiewicz, J, Jacquet, P, Jacquot, M, Jagannathan, V, Jan, M, Jensen, J, Johansson, MU, Johner, N, Jungo, F, Junier, T, Kahraman, A, Katsantoni, M, Keller, G, Kerhornou, A, Khalid, F, Klingbiel, D, Kimljenovic, A, Kriventseva, E, Kryuchkova, N, Kumar, S, Kutalik, Z, Kuznetsov, D, Kuzyakiv, R, Lane, L, Lara, V, Ledesma, L, Leleu, M, Lemercier, P, Lew, D, Lieberherr, D, Liechti, R, Lisacek, F, Fischer, H, Litsios, G, Liu, J, Lombardot, T, Mace, A, Maffioletti, S, Mahi, M-A, Maiolo, M, Majjigapu, SR, Malmstrom, L, Mangold, V, Marek, D, Mariethoz, J, Marin, R, Martin, O, Martin, X, Martin-Campos, T, Mary, C, Masclaux, F, Masson, P, Meier, C, Messina, A, Lenoir, MM, Meyer, X, Michel, P-A, Michielin, O, Milanese, A, Missiaglia, E, Perez, JM, Caria, VM, Moret, P, Moretti, S, Morgat, A, Mottaz, A, Mottin, L, Mouscaz, Y, Mueller, M, Murri, R, Mylonas, R, Neuenschwander, S, Nikitin, F, Niknejad, A, Nouspikel, N, Nso, LN, Okoniewski, M, Omasits, U, Paccaud, B, Pachkov, M, Paesano, SG, Pagni, M, Palagi, PM, Pasche, E, Payne, JL, Pedruzzi, I, Peischl, S, Peitsch, M, Perlini, S, Pilbout, S, Podvinec, M, Pohlmann, R, Polizzi, D, Potter, D, Poux, S, Pozzato, M, Pradervand, S, Praz, V, Pruess, M, Pujadas, E, Racle, J, Raschi, M, Ratib, O, Rausell, A, de Laval, VR, Redaschi, N, Rempfer, C, Ren, G, Vandati, RAR, Rib, L, Grognuz, OR, Altimiras, ER, Rivoire, C, Robin, T, Robinson-Rechavi, M, Rodrigues, J, Roechert, B, Roelli, P, Romano, V, Rossier, G, Roth, A, Rougemont, J, Roux, J, Royo, H, Ruch, P, Ruinelli, M, Rustom, M, Sates, A, Roehrig, UF, Rueeger, S, Salamin, N, Sankar, M, Sarkar, N, Saxenhofer, M, Schaeffer, M, Schaerli, Y, Schaper, E, Schmid, A, Schmid, E, Schmid, C, Schmid, M, Schmidt, S, Schmocker, D, Schneider, M, Schuepbach, T, Schwede, T, Schuetz, F, Sengstag, T, Serrano, M, Sethi, A, Shahmirzadi, O, Sigrist, C, Silvestro, D, Simao Neto, FA, Simillion, C, Simonovic, M, Skunca, N, Sluzek, K, Soneson, C, Sprouffske, K, Stadler, M, Staehli, S, Stevenson, B, Stockinger, H, Straszewski, J, Stricker, T, Studer, G, Stutz, A, Suffiotti, M, Sundaram, S, Szklarczyk, D, Szovenyi, P, Tegenfeldt, F, Teixeira, D, Tellenbach, S, Smith, AAT, Tognolli, M, Topolsky, I, Thuong, VDT, Tsantoulis, P, Tzika, AC, Agote, AU, van Nimwegen, E, von Mering, C, Varadarajan, A, Veranneman, M, Verbregue, L, Veuthey, A-L, Vishnyakova, D, Vyas, R, Wagner, A, Walther, D, Wan, HW, Wang, M, Waterhouse, R, Waterhouse, A, Wicki, A, Wigger, L, Wirapati, P, Witschi, U, Wyder, S, Wyler, K, Wuethrich, D, Xenarios, I, Yamada, K, Yan, Z, Yasrebi, H, Zahn, M, Zangger, N, Zdobnov, E, Zerzion, D, Zoete, V, and Zoller, S
- Abstract
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article.
- Published
- 2016
4. Is hybridization driving the evolution of climatic niche in Alyssum montanum (Brassicaceae)?
- Author
-
Arrigo N, de la Harpe M, Litsios G, Zozomová-Lihová J, Španiel S, Marhold K, Barker MS, and Alvarez N
- Abstract
PREMISE OF THE STUDY: After decades of interest the contribution of hybridization to ecological diversification remains unclear. Hybridization is a potent source of novelty but nascent hybrid lineages must overcome reproductive and ecological competition from their parental species. Here we assess whether hybrid speciation is advantageous over alternative modes of speciation by comparing the geographical and ecological ranges and climatic niche evolutionary rates of stabilized allopolyploid vs. autopolyploids in the Alyssum montanum species complex. METHODS: We combined an extensive review of studies addressing the systematics and genetic diversity of A. montanum s.l. with flow cytometry and cloning of nuclear markers to establish the ploidy level and putative hybrid nature of 205 populations. The respective geographic distribution and climatic niche evolution dynamics of the allo and autopolyploids were investigated using multivariate analyses and comparative phylogenetic approaches. KEY RESULTS: As expected by theory allopolyploids occur mainly along contact zones and are generally spatially overlapping with their diploid counterparts. However they demonstrate higher rates of niche evolution and expand into different climatic conditions than those of their diploid congeners. In contrast autopolyploids show lower rates of niche evolution occupy ecological niches similar to their ancestors and are restricted to less competitive and peripheral geographic areas. CONCLUSIONS: Hybridization thus seems advantageous by promoting ecological niche evolution and more readily allowing escape from competitive exclusion.
- Full Text
- View/download PDF
5. Mutualism with sea anemones triggered the adaptive radiation of clownfishes
- Author
-
Litsios Glenn, Sims Carrie A, Wüest Rafael O, Pearman Peter B, Zimmermann Niklaus E, and Salamin Nicolas
- Subjects
Ecological speciation ,Diversification ,Comparative method ,Evolutionary rate ,Brownian Motion ,Pomacentridae ,Evolution ,QH359-425 - Abstract
Abstract Background Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats. Results We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations. Conclusions The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.
- Published
- 2012
- Full Text
- View/download PDF
6. Gene flow throughout the evolutionary history of a colour polymorphic and generalist clownfish.
- Author
-
Schmid S, Bachmann Salvy M, Garcia Jimenez A, Bertrand JAM, Cortesi F, Heim S, Huyghe F, Litsios G, Marcionetti A, O'Donnell JL, Riginos C, Tettamanti V, and Salamin N
- Subjects
- Animals, Pacific Ocean, Pigmentation genetics, Indian Ocean, Biological Evolution, Whole Genome Sequencing, Color, Gene Flow, Perciformes genetics, Perciformes classification, Genetics, Population
- Abstract
Even seemingly homogeneous on the surface, the oceans display high environmental heterogeneity across space and time. Indeed, different soft barriers structure the marine environment, which offers an appealing opportunity to study various evolutionary processes such as population differentiation and speciation. Here, we focus on Amphiprion clarkii (Actinopterygii; Perciformes), the most widespread of clownfishes that exhibits the highest colour polymorphism. Clownfishes can only disperse during a short pelagic larval phase before their sedentary adult lifestyle, which might limit connectivity among populations, thus facilitating speciation events. Consequently, the taxonomic status of A. clarkii has been under debate. We used whole-genome resequencing data of 67 A. clarkii specimens spread across the Indian and Pacific Oceans to characterize the species' population structure, demographic history and colour polymorphism. We found that A. clarkii spread from the Indo-Pacific Ocean to the Pacific and Indian Oceans following a stepping-stone dispersal and that gene flow was pervasive throughout its demographic history. Interestingly, colour patterns differed noticeably among the Indonesian populations and the two populations at the extreme of the sampling distribution (i.e. Maldives and New Caledonia), which exhibited more comparable colour patterns despite their geographic and genetic distances. Our study emphasizes how whole-genome studies can uncover the intricate evolutionary past of wide-ranging species with diverse phenotypes, shedding light on the complex nature of the species concept paradigm., (© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
7. Clownfishes evolution below and above the species level.
- Author
-
Rolland J, Silvestro D, Litsios G, Faye L, and Salamin N
- Subjects
- Animals, Evolution, Molecular, Fish Proteins metabolism, Perciformes physiology, Phylogeny, Population Density, Rhodopsin metabolism, Sequence Analysis, DNA, Biological Evolution, Fish Proteins genetics, Perciformes anatomy & histology, Perciformes genetics, Rhodopsin genetics, Selection, Genetic
- Abstract
The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1 , a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels., (© 2018 The Authors.)
- Published
- 2018
- Full Text
- View/download PDF
8. First draft genome of an iconic clownfish species (Amphiprion frenatus).
- Author
-
Marcionetti A, Rossier V, Bertrand JAM, Litsios G, and Salamin N
- Abstract
Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation., (© 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
9. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification.
- Author
-
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, and Zimmermann NE
- Subjects
- Animals, Bayes Theorem, Evolution, Molecular, Phylogeny, Pinus classification, Fossils, Genetic Speciation, Pinus genetics
- Abstract
Background: The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods., Results: We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines., Conclusions: Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.
- Published
- 2017
- Full Text
- View/download PDF
10. Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (Asclepias spp.).
- Author
-
Pellissier L, Litsios G, Fishbein M, Salamin N, Agrawal AA, and Rasmann S
- Subjects
- Biomass, Phylogeny, Plant Roots physiology, Principal Component Analysis, Quantitative Trait, Heritable, Species Specificity, Asclepias physiology, Biological Evolution, Ecosystem
- Abstract
Given the dual role of many plant traits to tolerate both herbivore attack and abiotic stress, the climatic niche of a species should be integrated into the study of plant defense strategies. Here we investigate the impact of plant reproductive strategy and components of species' climatic niche on the rate of chemical defense evolution in the milkweeds using a common garden experiment of 49 species. We found that across Asclepias species, clonal reproduction repeatedly evolved in lower temperature conditions, in species generally producing low concentrations of a toxic defense (cardenolides). Additionally, we found that rates of cardenolide evolution were lower for clonal than for nonclonal species. We thus conclude that because the clonal strategy is based on survival, long generation times, and is associated with tolerance of herbivory, it may be an alternative to toxicity in colder ecosystems. Taken together, these results indicate that the rate of chemical defense evolution is influenced by the intersection of life-history strategy and climatic niches into which plants radiate., (© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.)
- Published
- 2016
- Full Text
- View/download PDF
11. Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions?
- Author
-
Pirie MD, Litsios G, Bellstedt DU, Salamin N, and Kissling J
- Subjects
- Evolution, Molecular, Evolution, Planetary, Gentianaceae genetics, Indian Ocean, Molecular Sequence Data, Plant Proteins genetics, Sequence Analysis, DNA, Gentianaceae classification, Gentianaceae physiology, Phylogeny, Plant Dispersal
- Abstract
Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the 'Gondwanan vicariance' scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group., (© 2015 The Author(s) Published by the Royal Society. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
12. Hybridisation and diversification in the adaptive radiation of clownfishes.
- Author
-
Litsios G and Salamin N
- Subjects
- Animals, Hybridization, Genetic, Phylogeny, Biological Evolution, Genetic Speciation, Perciformes classification, Perciformes genetics
- Abstract
Background: The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown., Results: We generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids., Conclusions: Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
- Published
- 2014
- Full Text
- View/download PDF
13. Host specialist clownfishes are environmental niche generalists.
- Author
-
Litsios G, Kostikova A, and Salamin N
- Subjects
- Animals, Fish Proteins genetics, Fish Proteins metabolism, Molecular Sequence Data, Perciformes genetics, Phylogeny, Sequence Analysis, DNA, Biological Evolution, Ecosystem, Perciformes physiology, Sea Anemones physiology, Symbiosis
- Abstract
Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists., (© 2014 The Author(s) Published by the Royal Society. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
14. Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes.
- Author
-
Frédérich B, Olivier D, Litsios G, Alfaro ME, and Parmentier E
- Subjects
- Animals, Biodiversity, Food Chain, Multifactorial Inheritance, Perciformes anatomy & histology, Biological Evolution, Perciformes physiology, Phylogeny, Vocalization, Animal
- Abstract
Trait decoupling, wherein evolutionary release of constraints permits specialization of formerly integrated structures, represents a major conceptual framework for interpreting patterns of organismal diversity. However, few empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis by examining the evolutionary consequences of the loss of the ceratomandibular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament. However, this increase in evolutionary rate is not associated with an increase in trophic breadth, but rather with morphofunctional specialization for the capture of zooplanktonic prey. Lineages lacking the ceratomandibular ligament also shows different acoustic signals (i.e. higher variation of pulse periods) from others, resulting in an increase of the acoustic diversity across the family. Our results support the idea that trait decoupling can increase morphological and behavioural diversity through increased specialization rather than the generation of novel ecotypes., (© 2014 The Author(s) Published by the Royal Society. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
15. Quaternary coral reef refugia preserved fish diversity.
- Author
-
Pellissier L, Leprieur F, Parravicini V, Cowman PF, Kulbicki M, Litsios G, Olsen SM, Wisz MS, Bellwood DR, and Mouillot D
- Subjects
- Animals, Australia, Biodiversity, Climate Change, Conservation of Natural Resources, Coral Reefs, Fishes
- Abstract
The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity., (Copyright © 2014, American Association for the Advancement of Science.)
- Published
- 2014
- Full Text
- View/download PDF
16. Effects of a fire response trait on diversification in replicated radiations.
- Author
-
Litsios G, Wüest RO, Kostikova A, Forest F, Lexer C, Linder HP, Pearman PB, Zimmermann NE, and Salamin N
- Subjects
- Australia, Climate, Selection, Genetic, South Africa, Evolution, Molecular, Ferns genetics, Fires, Genetic Speciation, Genetic Variation, Quantitative Trait, Heritable
- Abstract
Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait-specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia. We show that climatic preferences evolve more rapidly in reseeder lineages than in resprouters and that the optima of these climatic preferences differ between the two strategies. We find that South Africa is more climatically heterogeneous than Australia, independent of the spatial scale we consider. We propose that rapid shifts between states of the fire response trait promote speciation by separating species ecologically, but this only happens when the landscape is sufficiently heterogeneous., (© 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.)
- Published
- 2014
- Full Text
- View/download PDF
17. Linking life-history traits, ecology, and niche breadth evolution in North American eriogonoids (Polygonaceae).
- Author
-
Kostikova A, Litsios G, Salamin N, and Pearman PB
- Subjects
- Climate, Environment, Geography, Models, Biological, North America, Phylogeny, Population Dynamics, Species Specificity, Biological Evolution, Polygonaceae physiology
- Abstract
Macroevolutionary and microevolutionary studies provide complementary explanations of the processes shaping the evolution of niche breadth. Macroevolutionary approaches scrutinize factors such as the temporal and spatial environmental heterogeneities that drive differentiation among species. Microevolutionary studies, in contrast, focus on the processes that affect intraspecific variability. We combine these perspectives by using macroevolutionary models in a comparative study of intraspecific variability. We address potential differences in rates of evolution of niche breadth and position in annual and perennial plants of the Eriogonoideae subfamily of the Polygonaceae. We anticipated higher rates of evolution in annuals than in perennials owing to differences in generation time that are paralleled by rates of molecular evolution. Instead, we found that perennial eriogonoid species present greater environmental tolerance (wider climate niche) than annual species. Niche breadth of perennial species has evolved two to four times faster than in annuals, while niche optimum has diversified more rapidly among annual species than among perennials. Niche breadth and average elevation of species are correlated. Moreover, niche breadth increases more rapidly with mean species elevation in perennials than in annuals. Our results suggest that both environmental gradients and life-history strategy influence rates and patterns of niche breadth evolution.
- Published
- 2013
- Full Text
- View/download PDF
18. Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae).
- Author
-
Litsios G, Pellissier L, Forest F, Lexer C, Pearman PB, Zimmermann NE, and Salamin N
- Subjects
- Animals, Biodiversity, Coral Reefs, Perciformes classification, Perciformes genetics, Phylogeny, Sequence Analysis, DNA, Species Specificity, Biological Evolution, Ecosystem, Perciformes physiology
- Abstract
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.
- Published
- 2012
- Full Text
- View/download PDF
19. Effects of phylogenetic signal on ancestral state reconstruction.
- Author
-
Litsios G and Salamin N
- Subjects
- Animals, Computer Simulation, Phylogeny, Statistics as Topic standards, Classification methods
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.