1. Asperuloside activates hepatic NRF2 signaling to stimulate mitochondrial metabolism and restore lipid homeostasis in high fat diet-induced MAFLD.
- Author
-
He C, Zhang Q, Zhu R, Tse G, and Wong WT
- Subjects
- Animals, Humans, Male, Mice, Hep G2 Cells, Homeostasis drug effects, Lipogenesis drug effects, Lipolysis drug effects, Mice, Inbred C57BL, Mitochondria drug effects, Mitochondria metabolism, Non-alcoholic Fatty Liver Disease drug therapy, Non-alcoholic Fatty Liver Disease metabolism, Non-alcoholic Fatty Liver Disease etiology, Diet, High-Fat adverse effects, Lipid Metabolism drug effects, Liver drug effects, Liver metabolism, NF-E2-Related Factor 2 metabolism, Signal Transduction drug effects
- Abstract
Background: Nutrient overload predisposes the development of metabolic dysfunction-associated fatty liver disease (MAFLD). However, there are no specific pharmacological therapies for MAFLD. Asperuloside (ASP), an iridoid glycoside extracted from Eucommia ulmoides leaves, can alleviate obesity and MAFLD. However, the underlying mechanism and pharmacological effects of ASP on ameliorating MAFLD remain largely investigated. This study aimed to explore the effects of ASP in ameliorating MAFLD and to unravel its underlying mechanism using a high fat diet-induced MAFLD mice model., Methods: Six-week-old C57BL/6 male mice were fed a high fat diet for 12 weeks to induce MAFLD, followed by daily ASP treatment (50 mg/kg via oral gavage) for 7 weeks. HepG2 cells were used for in vitro studies. Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, ML385, was employed to explore the mechanisms of ASP's action., Results: ASP stimulated lipolysis and inhibited de novo lipogenesis, contributing to alleviating lipid deposition in obese mice livers and HepG2 cells. ASP restored ATP production and reversed the impairments of mitochondrial energetics and biogenesis in obese mice livers and HepG2 cells. ASP attenuated oxidative stress in obese mice livers and HepG2 cells, exhibiting its antioxidant value. Impressively, ASP significantly promotes Nrf2 nuclear translocation and Nrf2/ARE binding, thereby activating Nrf2/ARE pathway in obese mice livers and HepG2 cells, demonstrating its potential as a hepatic Nrf2 activator. Nrf2 inhibition abolishes the protective effects of ASP against lipid deposition, oxidative stress and mitochondrial dysfunction, emphasizing the critical role of ASP-activated hepatic Nrf2 signaling in ameliorating MAFLD., Conclusions: This study provides the first line of evidence demonstrating the pivotal role of ASP-stimulated Nrf2 activation in alleviating MAFLD, emphasizing its potential as a hepatic Nrf2 activator targeting fatty liver diseases. These findings offer new evidence of ASP-stimulated mitochondrial metabolism and lipolysis in MAFLD, paving the way for the development of ASP as a therapeutic agent and dietary supplement to attenuate MAFLD progression., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF