305 results on '"Lipenkov, V."'
Search Results
2. Underestimation of Snow Accumulation Rate in Central Antarctica (Vostok Station) Derived from Stake Measurements
- Author
-
Ekaykin, A. A., Teben’kova, N. A., Lipenkov, V. Ya., Tchikhatchev, K. B., Veres, A. N., and Richter, A.
- Published
- 2020
- Full Text
- View/download PDF
3. Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
- Author
-
Fischer, H, Severinghaus, J, Brook, E, Wolff, E, Albert, M, Alemany, O, Arthern, R, Bentley, C, Blankenship, D, Chappellaz, J, Creyts, T, Dahl-Jensen, D, Dinn, M, Frezzotti, M, Fujita, S, Gallee, H, Hindmarsh, R, Hudspeth, D, Jugie, G, Kawamura, K, Lipenkov, V, Miller, H, Mulvaney, R, Parrenin, F, Pattyn, F, Ritz, C, Schwander, J, Steinhage, D, van Ommen, T, and Wilhelms, F
- Subjects
Climate Action ,Physical Geography and Environmental Geoscience ,Paleontology - Abstract
The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic disturbance and should be able to be recovered after careful presite selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that positions in the vicinity of major domes and saddle position on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, we strongly suggest significantly reduced ice thickness to avoid bottom melting. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e., more than 700 m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances, for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined beforehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity commences to bring datable samples to the surface and to allow an age check of the oldest ice.
- Published
- 2013
4. Content and Isotope Ratios of Noble Gases in Congelation Ice of Lake Vostok
- Author
-
Chetverikov, Yu. O., Aruev, N. N., Bulat, S. A., Gruzdov, K. A., Ezhov, V. F., Jean-Baptiste, P., Kamenskii, I. L., Lipenkov, V. Ya., Prasolov, E. M., Solovei, V. A., Tyukal’tsev, R. V., and Fedichkin, I. L.
- Published
- 2018
- Full Text
- View/download PDF
5. International Effort Helps Decipher Mysteries of Paleoclimate from Antarctic Ice Cores
- Author
-
Abynov, S. S., Angelis, M., Barkov, B. I., Barnola, J. M., Bender, M., Chapellaz, J., Chistiakov, V. K., Duval, P., Genthon, C., Jouzel, J., Kotlyakov, V. M., Korotkevitch, Ye. S., Kudriashov, B. B., Lipenkov, V. Y., Legrand, M., Lorius, C., Malaize, B., Martinerie, P., Nikolayev, V. I., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Salamantin, A. N., Saltzman, E., Sowers, T., Stievenard, M., Vostretsov, R. N., Wahlen, M., Waelbroeck, C., Yiou, F., and Yiou, P.
- Subjects
Antartica ,ice core ,paleoclimate ,atmospheres ,ice - Abstract
Ice cores drilled at Vostok Station, Antarctica, and studied over the past 10 years by Russia, France, and the United States (Figure 1) are providing a wealth of information about past climate and environmental changes over more than a full glacial-interglacial cycle. The ice cores show that East Antarctica was colder and drier during glacial periods than during the Holocene and that large-scale atmospheric circulation was more vigorous during glacial times. They also support evidence from deep-sea sediment studies favoring orbital forcing of Pleistocene climate, reveal direct correlations of carbon dioxide and methane concentrations with temperature, and indicate how the accumulation of trace compounds have changed through time.
- Published
- 1995
6. Technology of nondestructive light gas extraction from ice tested on samples from a bore hole above Vostok Lake
- Author
-
Chetverikov, Yu. O., Aruev, N. N., Bulat, S. A., Ezhov, V. F., Lipenkov, V. Ya., Solovei, V. A., Tyukal’tsev, R. V., and Fedichkin, I. L.
- Published
- 2016
- Full Text
- View/download PDF
7. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
- Author
-
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M., Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.
- Abstract
The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.
- Published
- 2022
- Full Text
- View/download PDF
8. Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
- Author
-
Lipenkov, V. Ya., primary, Turkeev, A. V., additional, Vasilev, N. I., additional, Ekaykin, A. A., additional, and Poliakova, E. V., additional
- Published
- 2021
- Full Text
- View/download PDF
9. The Climatic Record from Antarctic Ice Now Extends Back to 220 kyr BP
- Author
-
Jouzel, J., Lorius, C., Petit, J. R., Ritz, C., Stievenard, M., Yiou, P., Barkov, N. I., Kotlyakov, V. M., Lipenkov, V., Duplessy, Jean-Claude, editor, and Spyridakis, Marie-Thérèse, editor
- Published
- 1994
- Full Text
- View/download PDF
10. Deep drilling in central Antarctica and penetration into subglacial Lake Vostok
- Author
-
Kotlyakov, V. M., Lipenkov, V. Ya., and Vasil’ev, N. I.
- Published
- 2013
- Full Text
- View/download PDF
11. Holocene thinning of the Greenland ice sheet
- Author
-
Vinther, B.M., Buchardt, S.L., Clausen, H.B., Dahl-Jensen, D., Johnsen, S.J., Fisher, D.A., Koerner, R.M., Raynaud, D., Lipenkov, V., Andersen, K.K., Blunier, T., Rasmussen, S.O., Steffensen, J.P., and Svensson, A.M.
- Subjects
Greenland -- Environmental aspects ,Paleoclimatology -- Research -- Environmental aspects ,Ice cores -- Environmental aspects -- Research ,Global warming -- Influence -- Environmental aspects -- Research ,Ice sheets -- Environmental aspects -- Research ,Paleogeography -- Holocene ,Environmental issues ,Science and technology ,Zoology and wildlife conservation ,Influence ,Research ,Environmental aspects - Abstract
On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern (1), especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins (2). Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes ([δ.sup.18]O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially (3) and that a consistent Holocene climate optimum--the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records (4)--did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing [δ.sup.18]O from GIS ice cores (3,5) with [δ.sup.18]O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of [δ.sup.18]O evidence from ice cores (3,6), our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our [δ.sup.18]O -based results are corroborated by the air content of ice cores, a proxy for surface elevation (7). State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate., Ice cores from six locations (3,8) have now been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) throughout the Holocene epoch (Fig. 1a). The GICC05 annual layer counting was [...]
- Published
- 2009
12. Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition
- Author
-
Delmonte, B., Petit, J. R., Andersen, K. K., Basile-Doelsch, I., Maggi, V., and Ya Lipenkov, V.
- Published
- 2004
- Full Text
- View/download PDF
13. Eemian interglacial reconstructed from a Greenland folded ice core
- Author
-
Dahl-Jensen, D., Albert, M. R., Aldahan, A., Azuma, N., Balslev-Clausen, D., Baumgartner, M., Berggren, A.-M., Bigler, M., Binder, T., Blunier, T., Bourgeois, J. C., Brook, E. J., Buchardt, S. L., Buizert, C., Capron, E., Chappellaz, J., Chung, J., Clausen, H. B., Cvijanovic, I., Davies, S. M., Ditlevsen, P., Eicher, O., Fischer, H., Fisher, D. A., Fleet, L. G., Gfeller, G., Gkinis, V., Gogineni, S., Goto-Azuma, K., Grinsted, A., Gudlaugsdottir, H., Guillevic, M., Hansen, S. B., Hansson, M., Hirabayashi, M., Hong, S., Hur, S. D., Huybrechts, P., Hvidberg, C. S., Iizuka, Y., Jenk, T., Johnsen, S. J., Jones, T. R., Jouzel, J., Karlsson, N. B., Kawamura, K., Keegan, K., Kettner, E., Kipfstuhl, S., Kjær, H. A., Koutnik, M., Kuramoto, T., Köhler, P., Laepple, T., Landais, A., Langen, P. L., Larsen, L. B., Leuenberger, D., Leuenberger, M., Leuschen, C., Li, J., Lipenkov, V., Martinerie, P., Maselli, O. J., Masson-Delmotte, V., McConnell, J. R., Miller, H., Mini, O., Miyamoto, A., Montagnat-Rentier, M., Mulvaney, R., Muscheler, R., Orsi, A. J., Paden, J., Panton, C., Pattyn, F., Petit, J.-R., Pol, K., Popp, T., Possnert, G., Prié, F., Prokopiou, M., Quiquet, A., Rasmussen, S. O., Raynaud, D., Ren, J., Reutenauer, C., Ritz, C., Röckmann, T., Rosen, J. L., Rubino, M., Rybak, O., Samyn, D., Sapart, C. J., Schilt, A., Schmidt, A. M. Z., Schwander, J., Schüpbach, S., Seierstad, I., Severinghaus, J. P., Sheldon, S., Simonsen, S. B., Sjolte, J., Solgaard, A. M., Sowers, T., Sperlich, P., Steen-Larsen, H. C., Steffen, K., Steffensen, J. P., Steinhage, D., Stocker, T. F., Stowasser, C., Sturevik, A. S., Sturges, W. T., Sveinbjörnsdottir, A., Svensson, A., Tison, J.-L., Uetake, J., Vallelonga, P., van de Wal, R. S. W., van der Wel, G., Vaughn, B. H., Vinther, B., Waddington, E., Wegner, A., Weikusat, I., White, J. W. C., Wilhelms, F., Winstrup, M., Witrant, E., Wolff, E. W., Xiao, C., and Zheng, J.
- Published
- 2013
- Full Text
- View/download PDF
14. First data on the climate variability in the vicinity of Vostok Station (central Antarctica) over the past 2,000 years based on the study of a snow-firn core
- Author
-
Veres, A. N., primary, Ekaykin, A. A., additional, Lipenkov, V. Ya., additional, Turkeev, A. V., additional, and Khodzer, T. V., additional
- Published
- 2020
- Full Text
- View/download PDF
15. Cell concentrations of microorganisms in glacial and lake ice of the Vostok ice core, East Antarctica
- Author
-
Bulat, S. A., Alekhina, I. A., Lipenkov, V. Ya., Lukin, V. V., Marie, D., and Petit, J. R.
- Published
- 2009
- Full Text
- View/download PDF
16. On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica)
- Author
-
Ekaykin, A. A., primary, Lipenkov, V. Ya., additional, Veres, A. N., additional, Kozachek, A. V., additional, and Skakun, A. A., additional
- Published
- 2019
- Full Text
- View/download PDF
17. Climatic interpretation of the recently extended Vostok ice records
- Author
-
Jouzel, J., Waelbroeck, C., Malaize, B., Bender, M., Petit, J. R., Stievenard, M., Barkov, N. I., Barnola, J. M., King, T., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Raynaud, D., Ritz, C., and Sowers, T.
- Published
- 1996
- Full Text
- View/download PDF
18. Marine Isotope Stage (MIS) 11 in the Vostok ice core: CO2 forcing and stability of East Antarctica
- Author
-
Raynaud, D., primary, Loutre, M. F., additional, Ritz, C., additional, Chappellaz, J., additional, Barnola, J-M., additional, Jouzel, J., additional, Lipenkov, V. Y., additional, Petit, J-R., additional, and Vimeux, F., additional
- Published
- 2003
- Full Text
- View/download PDF
19. Evidence for an early Holocene climatic optimum in the Antarctic deep ice-core record
- Author
-
Ciais, P, Petit, J R, Jouzel, J, Lorius, C, Barkov, N I, Lipenkov, V, and Nicolaïev, V
- Published
- 1992
- Full Text
- View/download PDF
20. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period
- Author
-
Jouzel, J., Barkov, N.I., Barnola, J.M., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V.M., Lipenkov, V., Lorius, C., Petit, J.R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.
- Subjects
Glaciers -- Antarctica ,Glacial epoch -- Research ,Glacial climates -- Research ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
A new glaciological time-scale that is consistent with ocean records has been established for the Vostok station in Antarctica. Ice-core records which reveal local temperature, dust accumulation and air composition extend the glaciological time-scale to the penultimate glacial period, approximately 140,000 to 200,000 years ago. Vostok's penultimate glacial period was colder t the most recent one, and concentrations of carbon dioxide and CH4 correlate well in relation to temperature throughout the record.
- Published
- 1993
21. More Than 200 Meters of Lake Ice Above Subglacial Lake Vostok, Antarctica
- Author
-
Jouzel, J., Petit, J. R., Souchez, R., Barkov, N. I., Lipenkov, V. Ya., Raynaud, D., Stievenard, M., Vassiliev, N. I., Verbeke, V., and Vimeux, F.
- Published
- 1999
22. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
- Author
-
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.
- Published
- 1999
23. An improved north–south synchronization of ice core records around the 41 kyr 10Be peak
- Author
-
Raisbeck, G., Cauquoin, Alexandre, Jouzel, J., Landais, A., Petit, J.-R., Lipenkov, V. Y., Beer, J., Synal, H.-A., Oerter, Hans, Johnsen, S. J., Steffensen, J. P., Svensson, A., Yiou, F., Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Swiss Federal Insitute of Aquatic Science and Technology [Dübendorf] (EAWAG), Ion Beam Physics [ETH Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Alfred Wegener Institute for Polar and Marine Research (AWI), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
- Subjects
lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,lcsh:Environmental pollution ,lcsh:Environmental protection ,lcsh:TD172-193.5 ,lcsh:TD169-171.8 ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,lcsh:Environmental sciences - Abstract
International audience; Using new high-resolution 10Be measurements in the NGRIP, EDML and Vostok ice cores, together with previously published data from EDC, we present an improved synchronization between Greenland and Antarctic ice cores during the Laschamp geomagnetic excursion ∼ 41 kyr ago. We estimate the precision of this synchronization to be ±20 years, an order of magnitude better than previous work. We discuss the implications of this new synchronization for making improved estimates of the depth difference between ice and enclosed gas of the same age (Δdepth), difference between age of ice and enclosed gas at the same depth (Δage) in the EDC and EDML ice cores, spectral properties of the 10Be profiles and phasing between Dansgaard–Oeschger-10 (in NGRIP) and AIM-10 (in EDML and EDC).
- Published
- 2018
24. Climatic variability in the era of MIS-11 (370-440 ka BP) according to isotope composition (delta D, delta O-18, delta O-17) of ice from the Vostok station cores
- Author
-
Veres, A. N., Ekaykin, A. A., Vladimirova, D. O., Kozachek, A. V., Lipenkov, V. Ya., and Skakun, A. A.
- Subjects
paleoclimate ,ice cores ,Antarctica ,stable water isotopes ,Marine Isotope Stage 11 - Published
- 2018
25. Temperature‐Driven Bubble Migration as Proxy for Internal Bubble Pressures and Bubble Trapping Function in Ice Cores
- Author
-
Dadic, R., primary, Schneebeli, M., additional, Wiese, M., additional, Bertler, N. A. N., additional, Salamatin, A. N., additional, Theile, T. C., additional, Alley, R. B., additional, and Lipenkov, V. Ya., additional
- Published
- 2019
- Full Text
- View/download PDF
26. Seasonal variations of snowpack temperature and thermal conductivity of snow in the vicinity of Vostok station, Antarctica
- Author
-
Shibayev, Yu. A., primary, Tchikhatchev, K. B., additional, Lipenkov, V. Ya., additional, Ekaykin, A. A., additional, Lefebvre, E., additional, Arnaud, L., additional, and Petit, J.-R., additional
- Published
- 2019
- Full Text
- View/download PDF
27. Spatial variability of snow isotopic composition and accumulation rate at the stake farm of Vostok station (Сentral Antarctica)
- Author
-
Ekaykin, A. A., primary, Vladimirova, D. O., additional, Tebenkova, N. A., additional, Brovkov, E. V., additional, Veres, A. N., additional, Kovyazin, A. V., additional, Kozachek, A. V., additional, Lindren, M., additional, Shibaev, Yu. A., additional, Preobrazhenskaya, A. V., additional, and Lipenkov, V. Ya, additional
- Published
- 2019
- Full Text
- View/download PDF
28. Four climate cycles in Vostok ice core
- Author
-
Petit, J. R., Basile, I., Leruyuet, A., Raynaud, D., Lorius, C., Jouzel, J., Stievenard, M., Lipenkov, V. Y., Barkov, N. I., Kudryashov, B. B., Davis, M., Saltzman, E., and Kotlyakov, V.
- Published
- 1997
29. Tritium records to trace stratospheric moisture inputs in Antarctica
- Author
-
Fourré, Élise, Landais, Amaelle, Cauquoin, Alexandre, Jean-Baptiste, Philippe, Lipenkov, V., Petit, Jean-Robert, Fourré, Élise, Landais, Amaelle, Cauquoin, Alexandre, Jean-Baptiste, Philippe, Lipenkov, V., and Petit, Jean-Robert
- Published
- 2018
30. Helium and Neon in the Accreted Ice of the Subglacial Antarctic Lake Vostok
- Author
-
Jean-Baptiste, P., Fourré, E., Petit, J. R., Lipenkov, V., Bulat, S., Chetverikov, Y., Raynaud, D., Jean-Baptiste, P., Fourré, E., Petit, J. R., Lipenkov, V., Bulat, S., Chetverikov, Y., and Raynaud, D.
- Abstract
We analyzed helium and neon in 24 samples from between 3,607 and 3,767 m (i.e., down to 2 m above the lake-ice interface) of the accreted ice frozen to the ceiling of Lake Vostok. Within uncertainties, the neon budget of the lake is balanced, the neon supplied to the lake by the melting of glacier ice being compensated by the neon exported by lake ice. The helium concentration in the lake is about 12 times more than in the glacier ice, with a measured 3He/4He ratio of 0.12 ± 0.01 Ra. This shows that Lake Vostok's waters are enriched by a terrigenic helium source. The 3He/4He isotope ratio of this helium source was determined. Its radiogenic value (0.057 × Ra) is typical of an old continental province, ruling out any magmatic activity associated with the tectonic structure of the lake. It corresponds to a low geothermal heat flow estimated at 51 mW/m2. ©2018. American Geophysical Union. All Rights Reserved.
- Published
- 2018
31. Helium and Neon in the Accreted Ice of the Subglacial Antarctic Lake Vostok
- Author
-
Jean‐Baptiste, P., primary, Fourré, E., additional, Petit, J. R., additional, Lipenkov, V., additional, Bulat, S., additional, Chetverikov, Y., additional, and Raynaud, D., additional
- Published
- 2018
- Full Text
- View/download PDF
32. HUNTING FOR ANTARCTICA'S OLDEST ICE
- Author
-
Lipenkov, V. Ya., primary and Ekaykin, A. A., additional
- Published
- 2018
- Full Text
- View/download PDF
33. CLIMATIC VARIABILITY IN THE ERA OF MIS‑11 (370–440 KA BP) ACCORDING TO ISOTOPE COMPOSITION (ΔD, Δ18O, Δ17O) OF ICE FROM THE VOSTOK STATION CORES
- Author
-
Veres, A. N., primary, Ekaykin, A. A., additional, Vladimirova, D. O., additional, Kozachek, A. V., additional, Lipenkov, V. Ya., additional, and Skakun, A. A., additional
- Published
- 2018
- Full Text
- View/download PDF
34. Tritium Records to Trace Stratospheric Moisture Inputs in Antarctica
- Author
-
Fourré, E., primary, Landais, A., additional, Cauquoin, A., additional, Jean‐Baptiste, P., additional, Lipenkov, V., additional, and Petit, J.‐R., additional
- Published
- 2018
- Full Text
- View/download PDF
35. An improved north–south synchronization of ice core records around the 41 kyr 10Be peak
- Author
-
Raisbeck, G., Cauquoin, Alexandre, Jouzel, J., Landais, A., Petit, J.-R., Lipenkov, V. Y., Beer, J., Synal, H.-A., Oerter, Hans, Johnsen, S. J., Steffensen, J. P., Svensson, A., Yiou, F., Raisbeck, G., Cauquoin, Alexandre, Jouzel, J., Landais, A., Petit, J.-R., Lipenkov, V. Y., Beer, J., Synal, H.-A., Oerter, Hans, Johnsen, S. J., Steffensen, J. P., Svensson, A., and Yiou, F.
- Abstract
Using new high-resolution 10Be measurements in the NGRIP, EDML and Vostok ice cores, together with previously published data from EDC, we present an improved synchronization between Greenland and Antarctic ice cores during the Laschamp geomagnetic excursion ~41 kyr ago. We estimate the precision of this synchronization to be ±20 years, an order of magnitude better than previous work. We discuss the implications of this new synchronization for making improved estimates of the depth difference between ice and enclosed gas of the same age (Δdepth), difference between age of ice and enclosed gas at the same depth (Δage) in the EDC and EDML ice cores, spectral properties of the 10Be profiles and phasing between Dansgaard–Oeschger-10 (in NGRIP) and AIM-10 (in EDML and EDC).
- Published
- 2017
36. Variations of snow accumulation rate in Central Antarctica over the last 250 years
- Author
-
Ekaykin, A. A., Vladimirova, D. O., Lipenkov, V. Ya., Ekaykin, A. A., Vladimirova, D. O., and Lipenkov, V. Ya.
- Published
- 2017
37. Towards orbital dating of the EPICA Dome C ice core using δO2/N2
- Author
-
Landais, A., Dreyfus, G., Capron, E., Pol, K., Loutre, M. F., Raynaud, D., Lipenkov, V. Y., Arnaud, L., Masson-Delmotte, V., Paillard, D., Jouzel, J., and Leuenberger, M.
- Subjects
lcsh:GE1-350 ,lcsh:Environmental pollution ,lcsh:Environmental protection ,lcsh:TD172-193.5 ,lcsh:TD169-171.8 ,lcsh:Environmental sciences - Abstract
Based on a composite of several measurement series performed on ice samples stored at −25 °C or −50 °C, we present and discuss the first δO2/N2 record of trapped air from the EPICA Dome C (EDC) ice core covering the period between 300 and 800 ka (thousands of years before present). The samples stored at −25 °C show clear gas loss affecting the precision and mean level of the δO2/N2 record. Two different gas loss corrections are proposed to account for this effect, without altering the spectral properties of the original datasets. Although processes at play remain to be fully understood, previous studies have proposed a link between surface insolation, ice grain properties at close-off, and δO2/N2 in air bubbles, from which orbitally tuned chronologies of the Vostok and Dome Fuji ice core records have been derived over the last four climatic cycles. Here, we show that limitations caused by data quality and resolution, data filtering, and uncertainties in the orbital tuning target limit the precision of this tuning method for EDC. Moreover, our extended record includes two periods of low eccentricity. During these intervals (around 400 ka and 750 ka), the matching between δO2/N2 and the different insolation curves is ambiguous because some local insolation maxima cannot be identified in the δO2/N2 record (and vice versa). Recognizing these limitations, we restrict the use of our δO2/N2 record to show that the EDC3 age scale is generally correct within its published uncertainty (6 kyr) over the 300–800 ka period.
- Published
- 2012
38. Evolution of climate, glaciation and subglacial environments of Antarctica from the deep ice core and Lake Vostok water sample studies (Key results of implementation of the Russian Science Foundation project, 2014–2016)
- Author
-
Lipenkov, V. Ya., primary, Ekaykin, A. A., additional, Alekhina, I. A., additional, Shibaev, Yu. A., additional, Kozachek, A. V., additional, Vladimirova, D. O., additional, Vasilev, N. I., additional, and Preobrazhenskaya, A. V., additional
- Published
- 2017
- Full Text
- View/download PDF
39. Phenol compounds in the borehole 5G, Vostok station, after the unlocking of the subglacial lake
- Author
-
Alekhina, I. A., primary, Moskvin, A. L., additional, Ekaykin, A. A., additional, and Lipenkov, V. Ya., additional
- Published
- 2017
- Full Text
- View/download PDF
40. Variations of snow accumulation rate in Central Antarctica over the last 250 years
- Author
-
Ekaykin, A. A., primary, Vladimirova, D. O., additional, and Lipenkov, V. Ya., additional
- Published
- 2017
- Full Text
- View/download PDF
41. Eight glacial cycles from an Antarctic ice core
- Author
-
EPICA Community Members, Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, Hubertus, Flückiger, J., Hansson, M. E., Huybrechts, Philippe, Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, Heinrich, Mulvaney, R., Oerlemans, J., Oerter, Hans, Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, Urs, Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tabacco, I. E., Udisti, R., Wal, R. S. W., Broeke, M., Weiss, J., Wilhelms, Frank, Winther, Jan-Gunnar, Wolff, E. W., Zucchelli, M., Augustin, L, Barbante, C, Barnes, P, Barnola, J, Bigler, M, Castellano, E, Cattani, O, Chappellaz, J, Dahljensen, D, Delmonte, B, Dreyfus, G, Durand, G, Falourd, S, Fischer, H, Fluckiger, J, Hansson, M, Huybrechts, P, Jugie, R, Johnsen, S, Jouzel, J, Kaufmann, P, Kipfstuhl, J, Lambert, F, Lipenkov, V, Littot, G, Longinelli, A, Lorrain, R, Maggi, V, Masson Delmotte, V, Miller, H, Mulvaney, R, Oerlemans, J, Oerter, H, Orombelli, G, Parrenin, F, Peel, D, Petit, J, Raynaud, D, Ritz, C, Ruth, U, Schwander, J, Siegenthaler, U, Souchez, R, Stauffer, B, Steffensen, J, Stenni, B, Stocker, T, Tabacco, I, Udisti, R, van de Wal, R, van den Broeke, M, Weiss, J, Wilhelms, F, Winther, J, Wolff, E, Zucchelli, M, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger, J., Hansson, M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson Delmotte, V., Miller, H., Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, Barbara, Stocker, T. F., Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., and Zucchelli, M.
- Subjects
termination ,marine environment ,deep ice cores ,010504 meteorology & atmospheric sciences ,ice ,glacial cycle ,010502 geochemistry & geophysics ,01 natural sciences ,glacial-interglacial cycles ,Ice core ,deuterium profile ,Dome Concordia ,Ice age ,Flandrian interglacial ,Glacial period ,Marine applications ,EPICA Dome C ,Antarctica ,paleoclimate ,terminations ,Climatology ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,interglacial period ,Multidisciplinary ,article ,Oceanography ,priority journal ,greenhouse gas ,Interglacial ,environmental temperature ,Climate state ,Geology ,glacier ,deep ice core ,Climate change ,Greenhouse effect ,Quaternary ,Climate feedbacks ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences ,glacial-interglacial cycle ,paleoclimatology ,East Antarctica ,Greenhouse and icehouse Earth ,Antarctica Vostok ice core ,13. Climate action ,Settore GEO/08 - Geochimica e Vulcanologia ,ice core record ,Physical geography ,ice core ,Glacial cycles ,global climate - Abstract
International audience; The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long--28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
- Published
- 2004
42. Where to find 1.5 million yr old ice for the IPICS 'Oldest-Ice' ice core
- Author
-
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, Frédéric, Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., Van Ommen, T., Wilhelms, F., Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., Van Ommen, T., Wilhelms, F., Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Scripps Institution of Oceanography (SIO), University of California [San Diego] (UC San Diego), University of California-University of California, British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Département de Physique Théorique, University of Geneva [Switzerland], CLIPS, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Centre for Ice and Climate [Copenhagen], Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), National Institute of Polar Research [Tokyo] (NiPR), Physical Science Division, Natural Environment Research Council (NERC)-Natural Environment Research Council (NERC), Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Libre de Bruxelles [Bruxelles] (ULB), Physics Institute, University of Berne, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université libre de Bruxelles (ULB), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Scripps Institution of Oceanography (SIO - UC San Diego), University of California (UC)-University of California (UC), Université de Genève = University of Geneva (UNIGE), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Universität Bern [Bern] (UNIBE)
- Subjects
Paléontologie et paléoécologie ,Antarctic Plateau ,sub-01 ,lcsh:Environmental protection ,glaciation ,heat flux ,Stratigraphie ,ice flow ,Physical Geography and Environmental Geoscience ,Quaternary ,Environnement et pollution ,lcsh:Environmental pollution ,Dome Concordia ,paleoclimate ,lcsh:TD169-171.8 ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,lcsh:GE1-350 ,Paleontology ,Calluna vulgaris ,East Antarctica ,cryosphere ,Climate Action ,greenhouse gas ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,geothermal energy ,lcsh:TD172-193.5 ,Antarctica ,bedrock ,ice core ,ice thickness - Abstract
The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic disturbance and should be able to be recovered after careful presite selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that positions in the vicinity of major domes and saddle position on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, we strongly suggest significantly reduced ice thickness to avoid bottom melting. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e. more than 700 m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances, for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined beforehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity commences to bring datable samples to the surface and to allow an age check of the oldest ice., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2013
43. An improved North-South synchronization of ice core records around the 41 K beryllium 10 peak
- Author
-
Raisbeck, G. M., primary, Cauquoin, A., additional, Jouzel, J., additional, Landais, A., additional, Petit, J.-R., additional, Lipenkov, V. Y., additional, Beer, J., additional, Synal, H.-A., additional, Oerter, H., additional, Johnsen, S. J., additional, Steffensen, J. P., additional, Svensson, A., additional, and Yiou, F., additional
- Published
- 2016
- Full Text
- View/download PDF
44. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, Jean-Louis, de Angelis, M., Littot, G., Wolff, Eric, Ficher, Hubertus, Hansson, M., Bigler, Matthias, Udisti, Roberto, Wegner, Anna, Jouzel, Jean, Stenni, Barbara, Johnsen, Sigfus J., Masson-Delmotte, Valerie, Landais, Amaelle, Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J. R., Delmonte, Barbara, Dreyfus, G., Dahl-Jensen, Dorthe, Durand, G., Bereiter, Bernhard, Schilt, A., Spahni, Renato, Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, Jean-Louis, de Angelis, M., Littot, G., Wolff, Eric, Ficher, Hubertus, Hansson, M., Bigler, Matthias, Udisti, Roberto, Wegner, Anna, Jouzel, Jean, Stenni, Barbara, Johnsen, Sigfus J., Masson-Delmotte, Valerie, Landais, Amaelle, Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J. R., Delmonte, Barbara, Dreyfus, G., Dahl-Jensen, Dorthe, Durand, G., Bereiter, Bernhard, Schilt, A., Spahni, Renato, Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from inco
- Published
- 2015
45. Can we retrieve a clear paleoclimatic signal from the deeper part of the EPICA Dome C ice core?
- Author
-
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmontte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfuss, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmontte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfuss, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high resolution chemistry, ice texture) of the bottom 60m of the EPICA Dome C ice core from central Antarctica. These bottom layers have been subdivided in two sections: the lower 12m showing visible solid inclusions (basal ice) and the 48m above which we refer to as “deep ice”. Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end-term from a previous/ initial ice sheet configuration) can explain the observed bottom ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate “from within”, and not from incorporation processes of allochtone material at the ice–bedrock interface. We also discuss how th
- Published
- 2015
46. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, Margareta, Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, Margareta, Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (delta D-delta O-18(ice), delta O-18(atm), total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the basal clean ice facies. Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate from within, a
- Published
- 2015
- Full Text
- View/download PDF
47. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond
- Author
-
Kennicutt, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Peck, L.S., Massom, R., Rintoul, S.R., Storey, J., Vaughan, D.G., Wilson, T.J., Allison, I., Ayton, J., Badhe, R., Baeseman, J., Barrett, P.J., Bell, R.E., Bertler, N., Bo, S., Brandt, A., Bromwich, D., Cary, S.C., Clark, M.S., Convey, P., Costa, E.S., Cowan, D., Deconto, R., Dunbar, R., Elfring, C., Escutia, C., Francis, J., Fricker, H.A., Fukuchi, M., Gilbert, N., Gutt, J., Havermans, C., Hik, D., Hosie, G., Jones, C., Kim, Y.D., Le Maho, Y., Lee, S.H., Leppe, M., Leitchenkov, G., Li, X., Lipenkov, V., Lochte, K., López-Martínez, J., Lüdecke, C., Lyons, W., Marenssi, S., Miller, H., Morozova, P., Naish, T., Nayak, S., Ravindra, R., Retamales, J., Ricci, C.A., Rogan-Finnemore, M., Ropert-Coudert, Y., Samah, A.A., Sanson, L., Scambos, T., Schloss, I.R., Shiraishi, K., Siegert, M.J., Simões, J.C., Storey, B., Sparrow, M.D., Wall, D.H., Walsh, J.C., Wilson, G., Winther, J.G., Xavier, J.C., Yang, H., Sutherland, W.J., Kennicutt, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Peck, L.S., Massom, R., Rintoul, S.R., Storey, J., Vaughan, D.G., Wilson, T.J., Allison, I., Ayton, J., Badhe, R., Baeseman, J., Barrett, P.J., Bell, R.E., Bertler, N., Bo, S., Brandt, A., Bromwich, D., Cary, S.C., Clark, M.S., Convey, P., Costa, E.S., Cowan, D., Deconto, R., Dunbar, R., Elfring, C., Escutia, C., Francis, J., Fricker, H.A., Fukuchi, M., Gilbert, N., Gutt, J., Havermans, C., Hik, D., Hosie, G., Jones, C., Kim, Y.D., Le Maho, Y., Lee, S.H., Leppe, M., Leitchenkov, G., Li, X., Lipenkov, V., Lochte, K., López-Martínez, J., Lüdecke, C., Lyons, W., Marenssi, S., Miller, H., Morozova, P., Naish, T., Nayak, S., Ravindra, R., Retamales, J., Ricci, C.A., Rogan-Finnemore, M., Ropert-Coudert, Y., Samah, A.A., Sanson, L., Scambos, T., Schloss, I.R., Shiraishi, K., Siegert, M.J., Simões, J.C., Storey, B., Sparrow, M.D., Wall, D.H., Walsh, J.C., Wilson, G., Winther, J.G., Xavier, J.C., Yang, H., and Sutherland, W.J.
- Abstract
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
- Published
- 2015
48. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, J. -L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, J. -L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Published
- 2015
49. Non-climatic signal in ice core records: lessons from Antarctic mega-dunes
- Author
-
Ekaykin, A., primary, Eberlein, L., additional, Lipenkov, V., additional, Popov, S., additional, Scheinert, M., additional, Schröder, L., additional, and Turkeev, A., additional
- Published
- 2015
- Full Text
- View/download PDF
50. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia
- Author
-
Mikhalenko, V., primary, Sokratov, S., additional, Kutuzov, S., additional, Ginot, P., additional, Legrand, M., additional, Preunkert, S., additional, Lavrentiev, I., additional, Kozachek, A., additional, Ekaykin, A., additional, Faïn, X., additional, Lim, S., additional, Schotterer, U., additional, Lipenkov, V., additional, and Toropov, P., additional
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.