1. Do Log Factors Matter? On Optimal Wavelet Approximation and the Foundations of Compressed Sensing
- Author
-
Adcock, Ben, Brugiapaglia, Simone, and King-Roskamp, Matthew
- Subjects
Linear systems -- Research ,Fourier transformations -- Research ,Mathematical research ,Mathematics - Abstract
A signature result in compressed sensing is that Gaussian random sampling achieves stable and robust recovery of sparse vectors under optimal conditions on the number of measurements. However, in the context of image reconstruction, it has been extensively documented that sampling strategies based on Fourier measurements outperform this purportedly optimal approach. Motivated by this seeming paradox, we investigate the problem of optimal sampling for compressed sensing. Rigorously combining the theories of wavelet approximation and infinite-dimensional compressed sensing, our analysis leads to new error bounds in terms of the total number of measurements m for the approximation of piecewise [Formula omitted]-Hölder functions. Our theoretical findings suggest that Fourier sampling outperforms random Gaussian sampling when the Hölder exponent [Formula omitted] is large enough. Moreover, we establish a provably optimal sampling strategy. This work is an important first step towards the resolution of the claimed paradox and provides a clear theoretical justification for the practical success of compressed sensing techniques in imaging problems., Author(s): Ben Adcock [sup.1] , Simone Brugiapaglia [sup.2] , Matthew King-Roskamp [sup.1] Author Affiliations: (1) grid.61971.38, 0000 0004 1936 7494, Department of Mathematics, Simon Fraser University, , Burnaby, Canada (2) [...]
- Published
- 2022
- Full Text
- View/download PDF