1. Inequalities for products of singular values of matrices.
- Author
-
Boutata, Sara, Hirzallah, Omar, and Kittaneh, Fuad
- Subjects
- *
LINEAR operators , *BANACH algebras , *CONVEX functions - Abstract
Let A and B be $ n\times n $ n × n positive semidefinite matrices, $ f:[0,\infty)\rightarrow \lbrack 0,\infty) $ f : [ 0 , ∞) → [ 0 , ∞) be an increasing convex function with $ f\left (0\right) =0 $ f (0) = 0 , and let $ \Phi : \mathbb {M}_{n}(\mathbb {C})\rightarrow \mathbb {M}_{n}(\mathbb {C}) $ Φ : M n (C) → M n (C) be a positive unital linear map. It is shown that $$\begin{align*} & \prod_{j=1}^{k} s_{j}\left(f^{4}\left(\Phi \left(\frac{A+B}{2}\right) \right) \right)\\ & \quad \leq 2^{-4} \prod_{j=1}^{k} \left(s_{j}\left(\Phi^{2}\left(f^{2}\left(A\right) \right) +\Phi \left(f^{2}\left(A\right) \right) \right) +\left\Vert \Phi \left(f^{2}\left(B\right) \right) \right\Vert +1\right) \\ & \quad\quad \times \left(s_{j}\left(\Phi^{2}\left(f^{2}\left(B\right) \right) +\Phi \left(f^{2}\left(B\right) \right) \right) +\left\Vert \Phi \left(f^{2}\left(A\right) \right) \right\Vert +1\right) \end{align*}$$ ∏ j = 1 k s j (f 4 (Φ (A + B 2))) ≤ 2 − 4 ∏ j = 1 k (s j (Φ 2 (f 2 (A)) + Φ (f 2 (A))) + ‖ Φ (f 2 (B)) ‖ + 1) × (s j (Φ 2 (f 2 (B)) + Φ (f 2 (B))) + ‖ Φ (f 2 (A)) ‖ + 1) for $ k=1,2,\ldots,n $ k = 1 , 2 , ... , n , where $ s_{j}\left (T\right) $ s j (T) and $ \left \Vert T\right \Vert $ ‖ T ‖ are the $ j{\rm th} $ j th singular value and the spectral norm of T, respectively. Applications of our results to sectorial matrices are given. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF