1. RL-LLM-DT: An Automatic Decision Tree Generation Method Based on RL Evaluation and LLM Enhancement
- Author
-
Lin, Junjie, Zhao, Jian, Liu, Lin, Deng, Yue, Zhao, Youpeng, Huang, Lanxiao, Lin, Xia, Zhou, Wengang, and Li, Houqiang
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,68T05 ,I.2.6 ,I.2.11 - Abstract
Traditionally, AI development for two-player zero-sum games has relied on two primary techniques: decision trees and reinforcement learning (RL). A common approach involves using a fixed decision tree as one player's strategy while training an RL agent as the opponent to identify vulnerabilities in the decision tree, thereby improving its strategic strength iteratively. However, this process often requires significant human intervention to refine the decision tree after identifying its weaknesses, resulting in inefficiencies and hindering full automation of the strategy enhancement process. Fortunately, the advent of Large Language Models (LLMs) offers a transformative opportunity to automate the process. We propose RL-LLM-DT, an automatic decision tree generation method based on RL Evaluation and LLM Enhancement. Given an initial decision tree, the method involves two important iterative steps. Response Policy Search: RL is used to discover counter-strategies targeting the decision tree. Policy Improvement: LLMs analyze failure scenarios and generate improved decision tree code. In our method, RL focuses on finding the decision tree's flaws while LLM is prompted to generate an improved version of the decision tree. The iterative refinement process terminates when RL can't find any flaw of the tree or LLM fails to improve the tree. To evaluate the effectiveness of this integrated approach, we conducted experiments in a curling game. After iterative refinements, our curling AI based on the decision tree ranks first on the Jidi platform among 34 curling AIs in total, which demonstrates that LLMs can significantly enhance the robustness and adaptability of decision trees, representing a substantial advancement in the field of Game AI. Our code is available at https://github.com/Linjunjie99/RL-LLM-DT., Comment: Length:10 pages. Figures:10 figures. Additional Notes:In this paper, we have introduced a novel hybrid approach which leverages the strengths of both RL and LLMs to itera- tively refine decision tree tactics, enhancing their performance and adaptability
- Published
- 2024