176 results on '"Lima, Ivan D"'
Search Results
2. Decadal trends in the ocean carbon sink
- Author
-
DeVries, Tim, LeQuéré, Corinne, Andrews, Oliver, Berthet, Sarah, Hauck, Judith, Ilyina, Tatiana, Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Nowicki, Michael, Schwinger, Jörg, and Séférian, Roland
- Published
- 2019
3. Topics and Trends in NSF Ocean Sciences Awards
- Author
-
Lima, Ivan D. and Rheuban, Jennie E.
- Published
- 2018
4. North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century
- Author
-
Marinov, Irina, Doney, Scott C, Lima, Ivan D, Lindsay, K., Moore, J. K, and Mahowald, N.
- Subjects
anthropogenic carbon-dioxide ,ocean primary production ,atmospheric co2 ,interhemispheric asymmetry ,export production ,hemisphere winds ,decadal changes ,variability ,driven ,trends - Abstract
Here we analyze the impact of projected climate change on plankton ecology in all major ocean biomes over the 21st century, using a multidecade (1880–2090) experiment conducted with the Community Climate System Model (CCSM-3.1) coupled ocean-atmosphere-land-sea ice model. The climate response differs fundamentally in the Northern and Southern Hemispheres for diatom and small phytoplankton biomass and consequently for total biomass, primary, and export production. Increasing vertical stratification in the Northern Hemisphere oceans decreases the nutrient supply to the ocean surface. Resulting decreases in diatom and small phytoplankton biomass together with a relative shift from diatoms to small phytoplankton in the Northern Hemisphere result in decreases in the total primary and export production and export ratio, and a shift to a more oligotrophic, more efficiently recycled, lower biomass euphotic layer. By contrast, temperature and stratification increases are smaller in the Southern compared to the Northern Hemisphere. Additionally, a southward shift and increase in strength of the Southern Ocean westerlies act against increasing temperature and freshwater fluxes to destratify the water-column. The wind-driven, poleward shift in the Southern Ocean subpolar-subtropical boundary results in a poleward shift and increase in the frontal diatom bloom. This boundary shift, localized increases in iron supply, and the direct impact of warming temperatures on phytoplankton growth result in diatom increases in the Southern Hemisphere. An increase in diatoms and decrease in small phytoplankton partly compensate such that while total production and the efficiency of organic matter export to the deep ocean increase, total Southern Hemisphere biomass does not change substantially. The impact of ecological shifts on the global carbon cycle is complex and varies across ecological biomes, with Northern and Southern Hemisphere effects on the biological production and export partially compensating. The net result of climate change is a small Northern Hemisphere-driven decrease in total primary production and efficiency of organic matter export to the deep ocean.
- Published
- 2013
5. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2
- Author
-
Nevison, Cynthia D, Mahowald, Natalie M, Doney, Scott C, Lima, Ivan D, van der Werf, Guido R, Randerson, James T, Baker, David F, Kasibhatla, Prasad, and McKinley, Galen A
- Subjects
annual variation ,biogeochemical cycle ,carbon dioxide ,concentration (composition) ,El Nino ,growth rate ,Northern Hemisphere ,seasonal variation ,Southern Hemisphere ,tracer ,transport process ,Pinatubo - Abstract
Seasonal and interannual variability in atmospheric carbon dioxide (CO2) concentrations was simulated using fluxes from fossil fuel, ocean and terrestrial biogeochemical models, and a tracer transport model with time-varying winds. The atmospheric CO2 variability resulting from these surface fluxes was compared to observations from 89 GLOBALVIEW monitoring stations. At northern hemisphere stations, the model simulations captured most of the observed seasonal cycle in atmospheric CO2, with the land tracer accounting for the majority of the signal. The ocean tracer was 3–6 months out of phase with the observed cycle at these stations and had a seasonal amplitude only ∼10% on average of observed. Model and observed interannual CO2 growth anomalies were only moderately well correlated in the northern hemisphere (R ∼ 0.4–0.8), and more poorly correlated in the southern hemisphere (R < 0.6). Land dominated the interannual variability (IAV) in the northern hemisphere, and biomass burning in particular accounted for much of the strong positive CO2 growth anomaly observed during the 1997–1998 El Niño event. The signals in atmospheric CO2 from the terrestrial biosphere extended throughout the southern hemisphere, but oceanic fluxes also exerted a strong influence there, accounting for roughly half of the IAV at many extratropical stations. However, the modeled ocean tracer was generally uncorrelated with observations in either hemisphere from 1979–2004, except during the weak El Niño/post-Pinatubo period of the early 1990s. During that time, model results suggested that the ocean may have accounted for 20–25% of the observed slowdown in the atmospheric CO2 growth rate
- Published
- 2008
6. Predicting Carbonate Chemistry on the Northwest Atlantic Shelf Using Neural Networks
- Author
-
Lima, Ivan D., primary, Wang, Zhaohui A., additional, Cameron, Louise P., additional, Grabowski, Jonathan H., additional, and Rheuban, Jennie E., additional
- Published
- 2023
- Full Text
- View/download PDF
7. A Synthesis of Global Coastal Ocean Greenhouse Gas Fluxes
- Author
-
Resplandy, Laure, primary, Hogikyan, Allison, additional, Bange, Hermann Werner, additional, Bianchi, Daniele, additional, Weber, Thomas S, additional, Cai, Wei-Jun, additional, Doney, Scott C., additional, Fennel, Katja, additional, Gehlen, Marion, additional, Hauck, Judith, additional, Lacroix, Fabrice, additional, Landschützer, Peter, additional, Quéré, Corinne Le, additional, Müller, Jens Daniel, additional, Najjar, Raymond Gabriel, additional, Roobaert, Alizée, additional, Berthet, Sarah, additional, Bopp, Laurent, additional, Chau, Trang Thi-Tuyet, additional, Dai, Minhan, additional, Gruber, Nicolas, additional, Ilyina, Tatiana, additional, Kock, Annette, additional, Manizza, Manfredi, additional, Lachkar, Zouhair, additional, Laruelle, Goulven Gildas, additional, Liao, Enhui, additional, Lima, Ivan D., additional, Nissen, Cara, additional, Rödenbeck, Christian, additional, Séférian, Roland, additional, Schwinger, Jörg, additional, Toyama, Katsuya, additional, Tsujino, Hiroyuki, additional, and Regnier, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Toxicity of Atmospheric Aerosols on Marine Phytoplankton
- Author
-
Paytan, Adina, Mackey, Katherine R. M., Chen, Ying, Lima, Ivan D., Doney, Scott C., Mahowald, Natalie, Labiosa, Rochelle, Post, Anton F., and Thiemens, Mark H.
- Published
- 2009
- Full Text
- View/download PDF
9. Assessing and correcting estimated fCO2 from carbonate chemistry models of the northeastern US
- Author
-
Lanker, Corbin T, primary, Rheuban, Jennie, additional, Cameron, Louise, additional, Lima, Ivan D, additional, and Wang, Aleck Zhaohui, additional
- Published
- 2021
- Full Text
- View/download PDF
10. An Atmospheric Constraint on the Seasonal Air‐Sea Exchange of Oxygen and Heat in the Extratropics
- Author
-
Morgan, Eric J., primary, Manizza, Manfredi, additional, Keeling, Ralph F., additional, Resplandy, Laure, additional, Mikaloff‐Fletcher, Sara E., additional, Nevison, Cynthia D., additional, Jin, Yuming, additional, Bent, Jonathan D., additional, Aumont, Olivier, additional, Doney, Scott C., additional, Dunne, John P., additional, John, Jasmin, additional, Lima, Ivan D., additional, Long, Matthew C., additional, and Rodgers, Keith B., additional
- Published
- 2021
- Full Text
- View/download PDF
11. Are trends in SeaWiFS chlorophyll time-series unusual relative to historic variability
- Author
-
Yoder, James A., Kennelly, Maureen A., Doney, Scott C., and Lima, Ivan D.
- Published
- 2010
- Full Text
- View/download PDF
12. Gender differences in NSF ocean sciences awards
- Author
-
Lima, Ivan D., Rheuban, Jennie E., Lima, Ivan D., and Rheuban, Jennie E.
- Abstract
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lima, I.D., Rheuban, J.E. Gender differences in NSF ocean sciences awards. Oceanography 34(4), (2021), https://doi.org/10.5670/oceanog.2021.401., In this study, we examine how women’s representation in National Science Foundation Ocean Sciences (NSF-OCE) awards changed between 1987 and 2019 and how it varied across different programs, research topics, and award types. Women’s participation in NSF-OCE awards increased at a rate of approximately 0.6% per year from about 10% in 1987 to 30% in 2019, and the strong similarity between the temporal trends in the NSF-OCE awards and the academic workforce suggests that there was no gender bias in NSF funding throughout the 33-year study period. The programs, topics, and award types related to education showed the strongest growth, achieving and surpassing parity with men, while those related to the acquisition of shared instrumentation and equipment for research vessels had the lowest women’s representation and showed relatively little change over time. Despite being vastly outnumbered by men, women principal investigators (PIs) tended to do more collaborative work and had a more diversified “portfolio” of research and research-related activities than men. We also found no evidence of gender bias in the amount awarded to men and women PIs during the study period. These results show that, despite significant increases in women’s participation in oceanography over the past three decades, women have still not reached parity with men. Although there appears to be no gender bias in funding decisions or amount awarded, there are significant differences between women’s participation in specific research subject areas that may reflect overall systemic biases in oceanography and academia more broadly. These results highlight areas where further investment is needed to improve women’s representation.
- Published
- 2021
13. Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing
- Author
-
Eveleth, Rachel, Glover, David M., Long, Matthew C., Lima, Ivan D., Chase, Alison P., Doney, Scott C., Eveleth, Rachel, Glover, David M., Long, Matthew C., Lima, Ivan D., Chase, Alison P., and Doney, Scott C.
- Abstract
© The Author(s), 2021. This article is distributed under the terms of the Creaive Commons Attribution License. The definitive version was published in Eveleth, R., Glover, D. M., Long, M. C., Lima, I. D., Chase, A. P., & Doney, S. C. . Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing. Frontiers in Marine Science, 8, (2021): 612764, https://doi.org/10.3389/fmars.2021.612764., High-resolution ocean biophysical models are now routinely being conducted at basin and global-scale, opening opportunities to deepen our understanding of the mechanistic coupling of physical and biological processes at the mesoscale. Prior to using these models to test scientific questions, we need to assess their skill. While progress has been made in validating the mean field, little work has been done to evaluate skill of the simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-resolving coupled Community Earth System Model simulation. We compare results from satellite remote sensing and ship underway observations in the North Atlantic Ocean, where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e., the arithmetic standard deviation divided by the mean, from the two observational data sets are approximately invariant across a large range of mean chlorophyll a values from oligotrophic and winter to subpolar bloom conditions. This relationship between the chlorophyll a mesoscale variability and the mean field appears to reflect an emergent property of marine biophysics, and the high-resolution simulation does poorly in capturing this skill metric, with the model underestimating observed variability under low chlorophyll a conditions such as in the subtropics., This work was supported in part by the National Aeronautics and Space Administration (NASA) as part of the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES; NASA grant 80NSSC18K0018). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the United States Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources.
- Published
- 2021
14. Assessing the Skill of a High-Resolution Marine Biophysical Model Using Geostatistical Analysis of Mesoscale Ocean Chlorophyll Variability From Field Observations and Remote Sensing
- Author
-
Eveleth, Rachel, primary, Glover, David M., additional, Long, Matthew C., additional, Lima, Ivan D., additional, Chase, Alison P., additional, and Doney, Scott C., additional
- Published
- 2021
- Full Text
- View/download PDF
15. Decadal variability of the ocean carbon sink
- Author
-
DeVries, Tim, LeQuéré, Corinne, Andrews, Oliver, Hauck, Judith, Ilyina, Tatiana, Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Nowicki, Michael, Schwinger, Jörg, Séférian, Roland, DeVries, Tim, LeQuéré, Corinne, Andrews, Oliver, Hauck, Judith, Ilyina, Tatiana, Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Nowicki, Michael, Schwinger, Jörg, and Séférian, Roland
- Abstract
In this study, we diagnose the interannual-to-decadal variability of ocean CO2 uptake from three independent methods: an ocean circulation inverse model (OCIM), global ocean biogeochemical models (GOBMs), and pCO2-based flux mapping products. We find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO2 mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Finally, we discuss the relative contribution of atmospheric pCO2, solubility, circulation, and biology to the decadal variability of the ocean CO2 sink.
- Published
- 2020
16. Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models
- Author
-
Lima, Ivan D., Olson, Donald B., and Doney, Scott C.
- Published
- 2002
17. Decadal trends in the ocean carbon sink
- Author
-
DeVries, Timothy, Le Quere, Corinne, Andrews, Oliver D., Berthet, Sarah, Hauck, Judith, Ilyina, Tatiana, Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Nowicki, Michael, Schwinger, Jorg, Séférian, Roland, DeVries, Timothy, Le Quere, Corinne, Andrews, Oliver D., Berthet, Sarah, Hauck, Judith, Ilyina, Tatiana, Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Nowicki, Michael, Schwinger, Jorg, and Séférian, Roland
- Abstract
Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (24), (2019):11646-11651, doi:10.1073/pnas.1900371116., Measurements show large decadal variability in the rate of CO2 accumulation in the atmosphere that is not driven by CO2 emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of CO2 due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic CO2 uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO2 mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial CO2 sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial CO2 uptake to climate variability and lead to improved climate projections and decadal climate predictions., We thank Rebecca Wright and Erik Buitenhuis at University of East Anglia, Norwich, for providing updated runs from the NEMO-PlankTOM5 model. T.D. was supported by NSF Grant OCE-1658392. C.L.Q. thanks the UK Natural Environment Research Council for supporting the SONATA Project (Grant NE/P021417/1). P.L. was supported by the Max Planck Society for the Advancement of Science. J.H. was supported under Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys) Grant VH-NG-1301. S.B. and R.S. were supported by the H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, Knowledge, Dissemination and Outreach,” which received funding from the European Union’s Horizon 2020 research and innovation program under Grant No 641816. SOCAT is an international effort, endorsed by the International Ocean Carbon Coordination Project, the Surface Ocean-Lower Atmosphere Study, and the Integrated Marine Biosphere Research program, to deliver a uniformly quality-controlled surface ocean CO2 database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT., 2019-11-28
- Published
- 2019
18. Attributing ocean acidification to major carbon producers
- Author
-
Licker, Rachel, Ekwurzel, Brenda, Doney, Scott C., Cooley, Sarah R., Lima, Ivan D., Heede, Richard, Frumhoff, Peter C., Licker, Rachel, Ekwurzel, Brenda, Doney, Scott C., Cooley, Sarah R., Lima, Ivan D., Heede, Richard, and Frumhoff, Peter C.
- Abstract
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Licker, R.; Ekwurzel, B.; Doney, S. C.; Cooley, S. R.; Lima, I. D.; Heede, R.; Frumhoff, P. C. Attributing ocean acidification to major carbon producers. Environmental Research Letters. 14(12), (2019): 124060, doi:10.1088/1748-9326/ab5abc., Recent research has quantified the contributions of CO2 and CH4 emissions traced to the products of major fossil fuel companies and cement manufacturers to global atmospheric CO2, surface temperature, and sea level rise. This work has informed societal considerations of the climate responsibilities of these major industrial carbon producers. Here, we extend this work to historical (1880–2015) and recent (1965–2015) acidification of the world's ocean. Using an energy balance carbon-cycle model, we find that emissions traced to the 88 largest industrial carbon producers from 1880–2015 and 1965–2015 have contributed ~55% and ~51%, respectively, of the historical 1880–2015 decline in surface ocean pH. As ocean acidification is not spatially uniform, we employ a three-dimensional ocean model and identify five marine regions with large declines in surface water pH and aragonite saturation state over similar historical (average 1850–1859 to average 2000–2009) and recent (average 1960–1969 to average of 2000–2009) time periods. We characterize the biological and socioeconomic systems in these regions facing loss and damage from ocean acidification in the context of climate change and other stressors. Such analysis can inform societal consideration of carbon producer responsibility for current and near-term risks of further loss and damage to human communities dependent on marine ecosystems and fisheries vulnerable to ocean acidification., The approach of using equation (1) benefited from discussions with Myles R Allen (University of Oxford) and Inez Fung (University of California, Berkeley). M W Dalton provided insights for the incorporation of the updated carbon producers data. Chloe Ames provided support for references. S Doney acknowledges support from the US National Science Foundation and the University of Virginia Environmental Resilience Institute. R Licker, B Ekwurzel and P C Frumhoff acknowledge the support of the Grantham Foundation for the Protection of the Environment, Wallace Global Fund, and Rockefeller Family Fund to the Union of Concerned Scientists. R Heede gratefully acknowledges the financial support of Wallace Global Fund, Rockefeller Brothers Fund, and Union of Concerned Scientists. We thank two anonymous reviewers for their helpful comments, which greatly improved our manuscript.
- Published
- 2019
19. Topics and trends in NSF ocean sciences awards
- Author
-
Lima, Ivan D., Rheuban, Jennie E., Lima, Ivan D., and Rheuban, Jennie E.
- Abstract
Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Topics and trends in NSF ocean sciences awards. Oceanography 31(4), (2018): 164-170. doi:10.5670/oceanog.2018.404., The National Science Foundation Ocean Sciences Division (NSF-OCE) provides the majority of the support for ocean research in the United States. Knowledge of the trends in research and funding for NSF-OCE awards is important to investigators, academic institutions, policy analysts, and advocacy organizations. Here, we apply topic modeling to NSF-OCE award abstracts to uncover underlying research topics, examine the interrelationships between awards, and identify research and funding trends. The 20 topics identified by the model capture NSF-OCE’s 10 largest programs (~90% of awards) remarkably well and provide better resolution into research subjects. The distribution of awards in topic space shows how the different topics relate to each other based on their similarity and how awards transition from one topic to another. Awards have become more interdisciplinary over time, with increasing trends in 13 of the 20 topics (65%). Seven topics show a growing fraction of the number of awards while six topics have a declining share. Both the annual inflation-adjusted amount of money awarded and the fraction of the annual funding have been increasing over time in four of the 20 topics. Three other topics show a decline in both the annual amount awarded and the fraction of total annual funding. The identified topics can be grouped into three major themes: infrastructure, education, and science. After 2011, increases in the mean annual cost per project result in a relatively constant fraction of annual funding for infrastructure, despite a significant decline in the infrastructure fraction of awards. The information presented on research and funding trends is useful to scientists and academic institutions in planning and decision-making, while the metrics we employed can be used by NSF to quantify the effects of policy decisions., We thank T. Horner, B. Peucker-Ehrenbrink, K. Buesseler and M. Kurz for discussions and comments, the Woods Hole Oceanographic Institution Department of Marine Chemistry and Geochemistry for support, and A. Mix and three anonymous reviewers for their comments and suggestions. NSF deserves special credit for making its data publicly available.
- Published
- 2019
20. Global Carbon Budget 2017
- Author
-
Le Quéré, Corinne, Andrew, Robbie M., Friedlingstein, Pierre, Sitch, Stephen, Pongratz, Julia, Manning, Andrew C., Korsbakken, Jan Ivar, Peters, Glen P., Canadell, Josep G., Jackson, Robert B., Boden, Thomas A., Tans, Pieter P., Andrews, Oliver D., Arora, Vivek, Bakker, Dorothee C. E., Barbero, Leticia, Becker, Meike, Betts, Richard, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Cosca, Catherine E., Cross, Jessica, Currie, Kim, Gasser, Thomas, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Houghton, Richard A., Hunt, Christopher W., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Kato, Etsushi, Kautz, Markus, Keeling, Ralph F., Klein Goldewijk, Kees, Körtzinger, Arne, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lima, Ivan D., Lombardozzi, Danica, Metzl, Nicolas, Millero, Frank J., Monteiro, Pedro M. S., Munro, David R., Nabel, Julia E. M. S., Nakaoka, Shin-ichiro, Nojiri, Yukihiro, Padin, X. Antonio, Peregon, Anna, Pfeil, Benjamin, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Reimer, Janet, Rödenbeck, Christian, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco, van der Laan-Luijkx, Ingrid T., Van Der Werf, Guido R., Van Heuven, Steven M. A. C., Viovy, Nicolas, Vuichard, Nicolas, Walker, Anthony P., Watson, Andrew J., Wiltshire, Andrew J., Zaehle, Sönke, Zhu, Dan, Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), College of Engineering, Mathematics and Physical Sciences, University of Exeter, College of Life and Environmental Sciences, University of Exeter, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Global Carbon Project, CSIRO Marine and Atmospheric Research, Department of Earth System Science [Stanford] (ESS), Stanford EARTH, Stanford University-Stanford University, Climate Change Science Institute [Oak Ridge] (CCSI), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, ESRL Chemical Sciences Division [Boulder] (CSD), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science (CIMAS), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami [Coral Gables]-University of Miami [Coral Gables], NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), National Oceanic and Atmospheric Administration (NOAA), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Department of Geographical Sciences, University of Maryland [College Park], University of Maryland System-University of Maryland System, ICOS-ATC (ICOS-ATC), NOAA Pacific Marine Environmental Laboratory [Seattle] (PMEL), National Institute of Water and Atmospheric Research [Wellington] (NIWA), International Institute for Applied Systems Analysis [Laxenburg] (IIASA), Climatic Research Unit, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Woods Hole Oceanographic Institution (WHOI), Ocean Process Analysis Laboratory, University of New Hampshire (UNH), Department of Atmospheric Sciences [Urbana], University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, The Institute of Applied Energy (IAE), Karlsruher Institut für Technologie (KIT), University of California [San Diego] (UC San Diego), University of California, PBL Netherlands Environmental Assessment Agency, Christian-Albrechts-Universität zu Kiel (CAU), Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), CISRO Oceans and Atmosphere, Antarctic Climate & Ecosystem Cooperative Research Centre, University of Tasmania [Hobart, Australia] (UTAS), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], Oeschger Centre for Climate Change Research (OCCR), University of Bern, National Center for Atmospheric Research [Boulder] (NCAR), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Department of Ocean Sciences, University of Miami [Coral Gables], Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa (INESC-ID), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST)-Instituto de Engenharia de Sistemas e Computadores (INESC), University of Wisconsin Whitewater, National Institute for Environmental Studies (NIES), Montana State University (MSU), Max-Planck-Institut für Biogeochemie (MPI-BGC), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Shandong Agricultural University (SDAU), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Wageningen University and Research [Wageningen] (WUR), Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), NASA Ames Research Center (ARC), Biogeochemical Systems Department [Jena], Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, and Huazhong University of Science and Technology [Wuhan] (HUST)
- Subjects
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
International audience; Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
- Published
- 2018
- Full Text
- View/download PDF
21. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate
- Author
-
Balaguru, Karthik, Doney, Scott C., Bianucci, Laura, Rasch, Philip J., Leung, L. Ruby, Yoon, Jin-Ho, Lima, Ivan D., Balaguru, Karthik, Doney, Scott C., Bianucci, Laura, Rasch, Philip J., Leung, L. Ruby, Yoon, Jin-Ho, and Lima, Ivan D.
- Abstract
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 13 (2018): e0191509, doi:10.1371/journal.pone.0191509., Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region’s spring bloom by the end of the 21st century., KB, LB, PJR and LRL were supported by the Office of Science (BER), U. S. Department of Energy as part of the Regional and Global Climate Modelling (RGCM) Program. SCD acknowledges support from NASA Award NNX15AE65G North Atlantic Aerosol and Marine Ecosystem Study (NAAMES).
- Published
- 2018
22. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate
- Author
-
Balaguru, Karthik, primary, Doney, Scott C., additional, Bianucci, Laura, additional, Rasch, Philip J., additional, Leung, L. Ruby, additional, Yoon, Jin-Ho, additional, and Lima, Ivan D., additional
- Published
- 2018
- Full Text
- View/download PDF
23. Projected decreases in future marine export production: The role of carbon fluxes through the upper ocean ecosystem
- Author
-
Laufkötter, Charlotte, Vogt, Meike, Gruber, Nicolas, Aumont, Olivier, Bopp, Laurent, Doney, Scott C., Dunne, John P., Hauck, Judith, John, Jasmin G., Lima, Ivan D., Séférian, Roland, and Völker, Christoph
- Abstract
Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between −1 and −12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes., Biogeosciences Discussions, 12, ISSN:1810-6277, ISSN:1810-6285
- Published
- 2015
24. A multi-model study on Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century
- Author
-
Hauck, Judith, Völker, Christoph, Wolf-Gladrow, Dieter, Laufkötter, Charlotte, Vogt, Meike, Aumont, Olivier, Bopp, Laurent, Buitenhuis, Erik T., Doney, Scott C., Dunne, John, Gruber, Nicolas, Hashioka, Taketo, John, Jasmin, Le Quéré, Corinne, Lima, Ivan D., Nakano, Hideyuki, Séférian, Roland, and Tottderdell, Ian
- Published
- 2015
25. Global carbon budget 2014
- Author
-
Le Quéré, Corinne, Moriarty, Róisín, Andrew, Robbie M., Peters, Glen P., Ciais, Philippe, Friedlingstein, Pierre, Stephen D., Jones, Sitch, Stephen, Tans, Pieter, Arneth, Almuth, Boden, Thomas A., Bopp, Laurent, Bozec, Yann, Canadell, Josep G., Chini, Louise P., Chevallier, Frédéric, Cosca, Catherine E., Harris, Ian C., Hoppema, Mario, Houghton, Richard A., House, Joanna I., Jain, Atul K., Johannessen, Truls, Kato, Etsushi, Keeling, Ralph F., Kitidis, Vassilis, Klein Goldewijk, K., Koven, Charles, Landa, Camilla S., Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Marland, Gregg, Mathis, Jeremy T., Metzl, Nicolas, Nojiri, Yukihiro, Olsen, Are, Ono, Tsuneo, Peng, Shushi, Peters, Wouter, Pfeil, Benjamin, Poulter, Benjamin, Raupach, Michael R., Regnier, Pierre, Rödenbeck, Christian, Saito, Shu, Salisbury, Joseph E., Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Segschneider, Joachim, Steinhoff, Tobias, Stocker, Benjamin, Sutton, Adrienne J., Takahashi, Taro, Tilbrook, Bronte, van der Werf, Guido R., Viovy, Nicolas, Wang, Yingping, Wanninkhof, Rik, Wiltshire, Andy, and Zeng, Ning
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014)., Earth System Science Data, 7 (1), ISSN:1866-3516, ISSN:1866-3508
- Published
- 2015
26. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: A modeling study
- Author
-
Arruda, R., Calil, Paulo H.R., Bianchi, Alejandro A., Doney, Scott C., Gruber, Nicolas, Lima, Ivan D., and Turi, Giuliana
- Abstract
We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the southwestern Atlantic Ocean. Overall, the region acts as a sink of atmospheric CO2 south of 30° S, and is close to equilibrium with the atmospheric CO2 to the north. On the shelves, the ocean acts as a weak source of CO2, except for the mid/outer shelves of Patagonia, which act as sinks. In contrast, the inner shelves and the low latitude open ocean of the southwestern Atlantic represent source regions. Observed nearshore-to-offshore and meridional pCO2 gradients are well represented by our simulation. A sensitivity analysis shows the importance of the counteracting effects of temperature and dissolved inorganic carbon (DIC) in controlling the seasonal variability of pCO2. Biological production and solubility are the main processes regulating pCO2, with biological production being particularly important on the shelves. The role of mixing/stratification in modulating DIC, and therefore surface pCO2, is shown in a vertical profile at the location of the Ocean Observatories Initiative (OOI) site in the Argentine Basin (42° S, 42° W). ISSN:1726-4170 ISSN:1726-4170
- Published
- 2015
27. Global carbon budget 2014
- Author
-
Le Quéré, Corinne, Moriarty, Róisín, Andrew, Robbie M., Peters, Glen P., Ciais, Philippe, Friedlingstein, Pierre, Jones, Stephen D., Sitch, Stephen, Tans, Pieter P., Arneth, Almut, Boden, Thomas A., Bopp, Laurent, Bozec, Yann, Canadell, Josep G., Chevallier, Frédéric, Cosca, Catherine E., Harris, Ian, Hoppema, Mario, Houghton, Richard A., House, J., Jain, Atul K., Johannessen, Truls, Kato, Etsushi, Keeling, Ralph F., Kitidis, Vassilis, Klein Goldewijk, Kees, Koven, C., Landa, Camilla S., Landschützer, Peter, Lenton, Andrew, Lima, Ivan D., Marland, Gregg, Mathis, Jeremy T., Metzl, Nicolas, Nojiri, Yukihiro, Olsen, Are, Ono, Tsuneo, Peters, Wouter, Pfeil, Benjamin, Poulter, Benjamin, Raupach, M. R., Regnier, P., Rödenbeck, Christian, Saito, Shu, Salisbury, Joseph E., Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Segschneider, Joachim, Steinhoff, Tobias, Stocker, Benjamin D., Sutton, Adrienne J., Takahashi, Taro, Tilbrook, Bronte, Van Der Werf, Guido R., Viovy, Nicolas, Wang, Y.-P., Wanninkhof, Rik H., Wiltshire, Andrew J., Zeng, N., Lefèvre, Nathalie, Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Tyndall Centre for Climate Change Research and School of Environmental Sciences, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Exeter, College of Life and Environmental Sciences [Exeter], NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Division technique INSU/SDU (DTI), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NOAA Pacific Marine Environmental Laboratory [Seattle] (PMEL), Climatic Research Unit, University of East Anglia, Department of Bentho-pelagic processes, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Geophysical Institute [Bergen], University of Bergen (UIB), The Institute of Applied Energy (IAE), Plymouth Marine Laboratory (PML), Plymouth Marine Laboratory, PBL Netherlands Environmental Assessment Agency, Helmholtz Centre for Environmental Research (UFZ), Institute of Biogeochemistry and Pollutant Dynamics [ETH Zürich] (IBP), Department of Environmental Systems Science [ETH Zürich] (D-USYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Appalachian State University, University, Équipe CO2 (E-CO2), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN), National Institute of Advanced Industrial Science and Technology (AIST), Centre for Isotope Research [Groningen] (CIO), University of Groningen [Groningen], Université libre de Bruxelles (ULB), Max-Planck-Institut für Biogeochemie (MPI-BGC), Japan Meteorological Agency (JMA), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO), University of Bergen (UIB)-University of Bergen (UIB), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), Met Office Hadley Centre (MOHC), United Kingdom Met Office [Exeter], Department of Atmospheric and Oceanic Science [College Park] (AOSC), University of Maryland [College Park], University of Maryland System-University of Maryland System, and Austral, Boréal et Carbone (ABC)
- Subjects
010504 meteorology & atmospheric sciences ,13. Climate action ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,15. Life on land ,010501 environmental sciences ,7. Clean energy ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1 and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.
- Published
- 2014
- Full Text
- View/download PDF
28. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem
- Author
-
Laufkotter, Charlotte, Vogt, Meike, Gruber, Nicolas, Aumont, Olivier, Bopp, Laurent, Doney, Scott C., Dunne, John P., Hauck, Judith, John, Jasmin G., Lima, Ivan D., Seferian, Roland, Volker, Christoph, Laufkotter, Charlotte, Vogt, Meike, Gruber, Nicolas, Aumont, Olivier, Bopp, Laurent, Doney, Scott C., Dunne, John P., Hauck, Judith, John, Jasmin G., Lima, Ivan D., Seferian, Roland, and Volker, Christoph
- Abstract
Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (presentday) distribution of diatoms (between 11-94% in the Southern Ocean) and the diatom contribution to particle formation (0.6-3.8 times higher than their contributi
- Published
- 2016
- Full Text
- View/download PDF
29. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem
- Author
-
Laufkötter, Charlotte, primary, Vogt, Meike, additional, Gruber, Nicolas, additional, Aumont, Olivier, additional, Bopp, Laurent, additional, Doney, Scott C., additional, Dunne, John P., additional, Hauck, Judith, additional, John, Jasmin G., additional, Lima, Ivan D., additional, Seferian, Roland, additional, and Völker, Christoph, additional
- Published
- 2016
- Full Text
- View/download PDF
30. Biological responses to environmental heterogeneity under future ocean conditions
- Author
-
Boyd, Philip W., primary, Cornwall, Christopher E., additional, Davison, Andrew, additional, Doney, Scott C., additional, Fourquez, Marion, additional, Hurd, Catriona L., additional, Lima, Ivan D., additional, and McMinn, Andrew, additional
- Published
- 2016
- Full Text
- View/download PDF
31. Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009
- Author
-
Sarma, V. V. S. S., Lenton, Andrew, Law, R. M., Metzl, Nicolas, Patra, P. K., Doney, Scott C., Lima, Ivan D., Dlugokencky, E., Ramonet, Michel, Valsala, Vinu, National Institute of Oceanography (CSIR), National Institute of Oceanography [India] (NIO), CSIRO Marine and Atmospheric Research (CSIRO-MAR), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Woods Hole Oceanographic Institution (WHOI), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Indian Institute of Tropical Meteorology (IITM)
- Subjects
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
publication Equipe CO2 qui intègre des analyses issues de OISO/CARAUS; International audience; The Indian Ocean (44° S-30° N) plays an important role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea-air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea-air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea-air CO2 uptake of -0.37 ± 0.06 Pg C yr-1, is consistent with the -0.24 ± 0.12 Pg C yr-1 calculated from observations. The fluxes from the Southern Indian Ocean (18° S-44° S; -0.43 ± 0.07 Pg C yr-1) are similar in magnitude to the annual uptake for the entire Indian Ocean. All models capture the observed pattern of fluxes in the Indian Ocean with the following exceptions: underestimation of upwelling fluxes in the northwestern region (off Oman and Somalia), over estimation in the northeastern region (Bay of Bengal) and underestimation of the CO2 sink in the subtropical convergence zone. These differences were mainly driven by a lack of atmospheric CO2 data in atmospheric inversions, and poor simulation of monsoonal currents and freshwater discharge in ocean biogeochemical models. Overall, the models and inversions do capture the phase of the observed seasonality for the entire Indian Ocean but over estimate the magnitude. The predicted sea-air CO2 fluxes by Ocean BioGeochemical Models (OBGM) respond to seasonal variability with strong phase lags with reference to climatological CO2 flux, whereas the atmospheric inversions predict an order of magnitude higher seasonal flux than OBGMs. The simulated interannual variability by the OBGMs is weaker than atmospheric inversions. Prediction of such weak interannual variability in CO2 fluxes by atmospheric inversions was mainly caused by lack of atmospheric data in the Indian Ocean. The OBGM models suggest a small strengthening of the sink over the period 1990-2009 of -0.01 Pg C decade-1. This is inconsistent with the observations in the southwest Indian Ocean that shows the growth rate of oceanic pCO2 was faster than the observed atmospheric CO2 growth, a finding attributed to the trend of the Southern Annual Mode (SAM) during the 1990s.
- Published
- 2013
- Full Text
- View/download PDF
32. Global oceanic emission of ammonia : constraints from seawater and atmospheric observations
- Author
-
Paulot, Fabien, Jacob, Daniel J., Johnson, Martin T., Bell, Tom G., Baker, Alexander R., Keene, William C., Lima, Ivan D., Doney, Scott C., Stock, Charles A., Paulot, Fabien, Jacob, Daniel J., Johnson, Martin T., Bell, Tom G., Baker, Alexander R., Keene, William C., Lima, Ivan D., Doney, Scott C., and Stock, Charles A.
- Abstract
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1165–1178, doi:10.1002/2015GB005106., Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils., NSF Grant Numbers: AGS-1020594, EF-0424599; WHOI Grant Number: AGS-0328342; UVA; UK SOLAS Knowledge Transfer; SOLAS Project Integration Grant Number: NE/E001696/1, 2016-02-13
- Published
- 2015
33. Comparing food web structures and dynamics across a suite of global marine ecosystem models
- Author
-
Sailley, Sevrine F., Vogt, Meike, Doney, Scott C., Aita, M. N., Bopp, Laurent, Buitenhuis, Erik T., Hashioka, Taketo, Lima, Ivan D., Le Quere, Corinne, Yamanaka, Yasuhiro, Sailley, Sevrine F., Vogt, Meike, Doney, Scott C., Aita, M. N., Bopp, Laurent, Buitenhuis, Erik T., Hashioka, Taketo, Lima, Ivan D., Le Quere, Corinne, and Yamanaka, Yasuhiro
- Abstract
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Modelling 261-262 (2013): 43–57, doi:10.1016/j.ecolmodel.2013.04.006., Dynamic Green Ocean Models (DGOMs) include different sets of Plankton Functional Types (PFTs) and equations, thus different interactions and food webs. Using four DGOMs (CCSM-BEC, PISCES, NEMURO and PlankTOM5) we explore how predator–prey interactions influence food web dynamics. Using each model's equations and biomass output, interaction strengths (direct and specific) were calculated and the role of zooplankton in modeled food webs examined. In CCSM-BEC the single size-class adaptive zooplankton preys on different phytoplankton groups according to prey availability and food preferences, resulting in a strong top-down control. In PISCES the micro- and meso-zooplankton groups compete for food resources, grazing phytoplankton depending on their availability in a mixture of bottom-up and top-down control. In NEMURO macrozooplankton controls the biomass of other zooplankton PFTs and defines the structure of the food web with a strong top-down control within the zooplankton. In PlankTOM5, competition and predation between micro- and meso-zooplankton along with strong preferences for nanophytoplankton and diatoms, respectively, leads to their mutual exclusion with a mixture of bottom-up and top-down control of the plankton community composition. In each model, the grazing pressure of the zooplankton PFTs and the way it is exerted on their preys may result in the food web dynamics and structure of the model to diverge from the one that was intended when designing the model. Our approach shows that the food web dynamics, in particular the strength of the predator–prey interactions, are driven by the choice of parameters and more specifically the food preferences. Consequently, our findings stress the importance of equation and parameter choice as they define interactions between PFTs and overall food web dynamics (competition, bottom-up or top-down effects). Also, the differences in the simulated food-webs between different models highlight the gap of knowledge for zoopla, This work was supported with funding from Palmer LTER (NSF OPP-0823101) and C-MORE (NSF EF-0424599).
- Published
- 2015
34. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century
- Author
-
Hauck, Judith, Volker, Chrisoph, Wolf-Gladrow, Dieter A., Laufkötter, Charlotte, Vogt, Meike, Aumont, Olivier, Bopp, Laurent, Buitenhuis, Erik T., Doney, Scott C., Dunne, John P., Gruber, Nicolas, Hashioka, Taketo, John, Jasmin G., Le Quere, Corinne, Lima, Ivan D., Nakano, Hideyuki, Seferian, Roland, Totterdell, Ian J., Hauck, Judith, Volker, Chrisoph, Wolf-Gladrow, Dieter A., Laufkötter, Charlotte, Vogt, Meike, Aumont, Olivier, Bopp, Laurent, Buitenhuis, Erik T., Doney, Scott C., Dunne, John P., Gruber, Nicolas, Hashioka, Taketo, John, Jasmin G., Le Quere, Corinne, Lima, Ivan D., Nakano, Hideyuki, Seferian, Roland, and Totterdell, Ian J.
- Abstract
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1451–1470, doi:10.1002/2015GB005140., We use a suite of eight ocean biogeochemical/ecological general circulation models from the Marine Ecosystem Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement on a dominance of either the SAM or the warming signal south of 44°S. In the southernmost zone, i.e., south of 58°S, they concur on an increase of biological export production, while between 44 and 58°S the models lack consensus on the sign of change in export. Yet in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO2(aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44°S, all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44°S to the total uptake of the Southern Ocean south of 30°S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (∼10%) and with negligible impact of climate effects on anthropogenic, CARBOCHANGE Grant Number: 264879; Palmer LTER Project Grant Number: NSF PLR-1440435
- Published
- 2015
35. Drivers and uncertainties of future global marine primary production in marine ecosystem models
- Author
-
Laufkötter, Charlotte, Vogt, Meike, Gruber, Nicolas, Aita-Noguchi, M., Aumont, Olivier, Bopp, Laurent, Buitenhuis, Erik T., Doney, Scott C., Dunne, John P., Hashioka, Taketo, Hauck, Judith, Hirata, Takafumi, John, Jasmin G., Le Quere, Corinne, Lima, Ivan D., Nakano, Hideyuki, Seferian, Roland, Totterdell, Ian J., Vichi, Marcello, Volker, Chrisoph, Laufkötter, Charlotte, Vogt, Meike, Gruber, Nicolas, Aita-Noguchi, M., Aumont, Olivier, Bopp, Laurent, Buitenhuis, Erik T., Doney, Scott C., Dunne, John P., Hashioka, Taketo, Hauck, Judith, Hirata, Takafumi, John, Jasmin G., Le Quere, Corinne, Lima, Ivan D., Nakano, Hideyuki, Seferian, Roland, Totterdell, Ian J., Vichi, Marcello, and Volker, Chrisoph
- Abstract
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 6955-6984, doi:10.5194/bg-12-6955-2015., Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the, C. Laufkötter and the research leading to these results have received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreements no. 238366 (Greencycles II) and 264879 (CarboChange). M. Vogt and N. Gruber acknowledge funding by ETH Zürich. S. C. Doney and I. D. Lima acknowledge support from NSF (AGS-1048827).
- Published
- 2015
36. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades
- Author
-
Thomas, Helmuth, Friederike Prowe, A. E., Lima, Ivan D., Doney, Scott C., Wanninkhof, Rik H., Greatbatch, Richard J., Schuster, Ute, Corbière, Antoine, Department of Oceanography [Halifax] (DO), Dalhousie University [Halifax], Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
- Subjects
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
International audience; Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical-biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979-2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub-basin scales in response to wind-driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air-sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long-term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long-term changes associated with anthropogenic CO2 uptake and climate change.
- Published
- 2008
- Full Text
- View/download PDF
37. Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean
- Author
-
Thomas, Helmuth, Prowe, A.E. Friederike, van Heuven, Steven, Bozec, Yann, de Baar, Hein J. W., Schiettecatte, Laure-Sophie, Suykens, Kim, Koné, Mathieu, Borges, Alberto V., Lima, Ivan D., Doney, Scott C., and Ocean Ecosystems
- Subjects
CLIMATE ,CONTINENTAL-SHELF ,PCO(2) ,SINK ,DISSOLVED INORGANIC CARBON ,ATMOSPHERIC CO2 ,INTERANNUAL VARIABILITY ,TEMPERATURE ,DIOXIDE ,SIMULATIONS - Abstract
New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO(2)) in surface waters rose by 22 mu atm, thus faster than atmospheric pCO(2), which in the same period rose approximately 11 matm. The surprisingly rapid decline in air-sea partial pressure difference (Delta pCO(2)) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean's ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea Delta pCO(2) over time as reported in several other recent North Atlantic studies.
- Published
- 2007
38. North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century
- Author
-
Marinov, Irina, Doney, Scott C., Lima, Ivan D., Lindsay, Keith, Moore, J. Keith, Mahowald, Natalie M., Marinov, Irina, Doney, Scott C., Lima, Ivan D., Lindsay, Keith, Moore, J. Keith, and Mahowald, Natalie M.
- Abstract
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 27 (2013): 1274–1290, doi:10.1002/2013GB004599., Here we analyze the impact of projected climate change on plankton ecology in all major ocean biomes over the 21st century, using a multidecade (1880–2090) experiment conducted with the Community Climate System Model (CCSM-3.1) coupled ocean-atmosphere-land-sea ice model. The climate response differs fundamentally in the Northern and Southern Hemispheres for diatom and small phytoplankton biomass and consequently for total biomass, primary, and export production. Increasing vertical stratification in the Northern Hemisphere oceans decreases the nutrient supply to the ocean surface. Resulting decreases in diatom and small phytoplankton biomass together with a relative shift from diatoms to small phytoplankton in the Northern Hemisphere result in decreases in the total primary and export production and export ratio, and a shift to a more oligotrophic, more efficiently recycled, lower biomass euphotic layer. By contrast, temperature and stratification increases are smaller in the Southern compared to the Northern Hemisphere. Additionally, a southward shift and increase in strength of the Southern Ocean westerlies act against increasing temperature and freshwater fluxes to destratify the water-column. The wind-driven, poleward shift in the Southern Ocean subpolar-subtropical boundary results in a poleward shift and increase in the frontal diatom bloom. This boundary shift, localized increases in iron supply, and the direct impact of warming temperatures on phytoplankton growth result in diatom increases in the Southern Hemisphere. An increase in diatoms and decrease in small phytoplankton partly compensate such that while total production and the efficiency of organic matter export to the deep ocean increase, total Southern Hemisphere biomass does not change substantially. The impact of ecological shifts on the global carbon cycle is complex and varies across ecological biomes, with Northern and Southern Hemisphere effects on the biological production and export partial, I. Marinov was supported by National Science Foundation (NSF) Grant ATM06-28582 while at WHOI and by NASA Grant NNX13AC92G while at Penn. I. Lima and S. Doney were supported by the Center for Microbial Oceanography, Research, and Education (CMORE), an NSF Science and Technology Center (EF-0424599)., 2014-06-20
- Published
- 2014
39. Dynamics of particulate organic carbon flux in a global ocean model
- Author
-
Lima, Ivan D., Lam, Phoebe J., Doney, Scott C., Lima, Ivan D., Lam, Phoebe J., and Doney, Scott C.
- Abstract
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 1177-1198, doi:10.5194/bg-11-1177-2014., The sinking of particulate organic carbon (POC) is a key component of the ocean carbon cycle and plays an important role in the global climate system. However, the processes controlling the fraction of primary production that is exported from the euphotic zone (export ratio) and how much of it survives respiration in the mesopelagic to be sequestered in the deep ocean (transfer efficiency) are not well understood. In this study, we use a three-dimensional, coupled physical–biogeochemical model (CCSM–BEC; Community Climate System Model–ocean Biogeochemical Elemental Cycle) to investigate the processes controlling the export of particulate organic matter from the euphotic zone and its flux to depth. We also compare model results with sediment trap data and other parameterizations of POC flux to depth to evaluate model skill and gain further insight into the causes of error and uncertainty in POC flux estimates. In the model, export ratios are mainly a function of diatom relative abundance and temperature while absolute fluxes and transfer efficiency are driven by mineral ballast composition of sinking material. The temperature dependence of the POC remineralization length scale is modulated by denitrification under low O2 concentrations and lithogenic (dust) fluxes. Lithogenic material is an important control of transfer efficiency in the model, but its effect is restricted to regions of strong atmospheric dust deposition. In the remaining regions, CaCO3 content of exported material is the main factor affecting transfer efficiency. The fact that mineral ballast composition is inextricably linked to plankton community structure results in correlations between export ratios and ballast minerals fluxes (opal and CaCO3), and transfer efficiency and diatom relative abundance that do not necessarily reflect ballast or direct ecosystem effects, respectively. This suggests that it might be difficult to differentiate between ecosystem and ballast effects in observations. The m, Support for this work was provided by WHOI Ocean and Climate Change Institute and NSF grants OCE-0960880 and AGS-1048827.
- Published
- 2014
40. Phytoplankton competition during the spring bloom in four plankton functional type models
- Author
-
Hashioka, Taketo, Vogt, Meike, Yamanaka, Yasuhiro, Le Quere, Corinne, Buitenhuis, Erik T., Aita, M. N., Alvain, S., Bopp, Laurent, Hirata, T., Lima, Ivan D., Sailley, Sevrine F., Doney, Scott C., Hashioka, Taketo, Vogt, Meike, Yamanaka, Yasuhiro, Le Quere, Corinne, Buitenhuis, Erik T., Aita, M. N., Alvain, S., Bopp, Laurent, Hirata, T., Lima, Ivan D., Sailley, Sevrine F., and Doney, Scott C.
- Abstract
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013); 6833-6850, doi:10.5194/bg-10-6833-2013., We investigated the mechanisms of phytoplankton competition during the spring bloom, one of the most dramatic seasonal events in lower-trophic-level ecosystems, in four state-of-the-art plankton functional type (PFT) models: PISCES, NEMURO, PlankTOM5 and CCSM-BEC. In particular, we investigated the relative importance of different ecophysiological processes on the determination of the community structure, focusing both on the bottom-up and the top-down controls. The models reasonably reproduced the observed global distribution and seasonal variation of phytoplankton biomass. The fraction of diatoms with respect to the total phytoplankton biomass increases with the magnitude of the spring bloom in all models. However, the governing mechanisms differ between models, despite the fact that current PFT models represent ecophysiological processes using the same types of parameterizations. The increasing trend in the percentage of diatoms with increasing bloom magnitude is mainly caused by a stronger nutrient dependence of diatom growth compared to nanophytoplankton (bottom-up control). The difference in the maximum growth rate plays an important role in NEMURO and PlankTOM5 and determines the absolute values of the percentage of diatoms during the bloom. In CCSM-BEC, the light dependency of growth plays an important role in the North Atlantic and the Southern Ocean. The grazing pressure by zooplankton (top-down control), however, strongly contributes to the dominance of diatoms in PISCES and CCSM-BEC. The regional differences in the percentage of diatoms in PlankTOM5 are mainly determined by top-down control. These differences in the mechanisms suggest that the response of marine ecosystems to climate change could significantly differ among models, even if the present-day ecosystem is reproduced to a similar degree of confidence. For further understanding of plankton competition and for the prediction of future change in marine ecosystems, it is important to understand th, T. Hashioka, Y. Yamanaka and T. Hirata, were supported by the Grant-in-Aid for the Global COE Program from MEXT, by the Global Environment Research Fund (S-5) from the Ministry of the Environment and by the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from JSPS. S. Doney, I. Lima and S. Sailley acknowledge support from C-MORE (NSF EF-0424599).
- Published
- 2014
41. Reply to a comment by Stephen M. Chiswell on: “Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom” by M. J. Behrenfeld et al. (2013)
- Author
-
Behrenfeld, Michael J., Doney, Scott C., Lima, Ivan D., Boss, Emmanuel S., Siegel, David A., Behrenfeld, Michael J., Doney, Scott C., Lima, Ivan D., Boss, Emmanuel S., and Siegel, David A.
- Abstract
Author Posting. © American Geophysical Union, [year]. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 27 (2013): 1294–1296, doi:10.1002/2013GB004720., 2014-06-12
- Published
- 2014
42. Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009
- Author
-
Sarma, V. V. S. S., Lenton, Andrew, Law, R. M., Metzl, Nicolas, Patra, Prabir K., Doney, Scott C., Lima, Ivan D., Dlugokencky, Edward J., Ramonet, M., Valsala, V., Sarma, V. V. S. S., Lenton, Andrew, Law, R. M., Metzl, Nicolas, Patra, Prabir K., Doney, Scott C., Lima, Ivan D., Dlugokencky, Edward J., Ramonet, M., and Valsala, V.
- Abstract
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 7035-7052, doi:10.5194/bg-10-7035-2013., The Indian Ocean (44° S–30° N) plays an important role in the global carbon cycle, yet it remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea–air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea–air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea–air CO2 uptake of −0.37 ± 0.06 PgC yr−1 is consistent with the −0.24 ± 0.12 PgC yr−1 calculated from observations. The fluxes from the southern Indian Ocean (18–44° S; −0.43 ± 0.07 PgC yr−1 are similar in magnitude to the annual uptake for the entire Indian Ocean. All models capture the observed pattern of fluxes in the Indian Ocean with the following exceptions: underestimation of upwelling fluxes in the northwestern region (off Oman and Somalia), overestimation in the northeastern region (Bay of Bengal) and underestimation of the CO2 sink in the subtropical convergence zone. These differences were mainly driven by lack of atmospheric CO2 data in atmospheric inversions, and poor simulation of monsoonal currents and freshwater discharge in ocean biogeochemical models. Overall, the models and inversions do capture the phase of the observed seasonality for the entire Indian Ocean but overestimate the magnitude. The predicted sea–air CO2 fluxes by ocean biogeochemical models (OBGMs) respond to seasonal variability with strong phase lags with reference to climatological CO2 flux, whereas the atmospheric inversions predicted an order of magnitude higher seasonal flux than OBGMs. The simulated interannual variability by the OBGMs is weaker than that found by atmospheric inversions. Prediction of such weak interannual variability in CO2 fluxes by atmospheric inversions, V. V. S. S. Sarma acknowledges support and encouragement from S. W. A. Naqvi, Director, CSIR-National Institute of Oceanography. A. Lenton and R. M. Law acknowledge support from the Australian Climate Change Science Program, funded by the Australian Government Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education, and by the Bureau of Meteorology and by CSIRO. S. C. Doney and I. D. Lima acknowledge support from the National Science Foundation (NSF AGS-1048827). N. Metzl acknowledges support of the EU grant 264879 CARBOCHANGE.
- Published
- 2014
43. Air-sea CO2 flux in the Pacific Ocean for the period 1990–2009
- Author
-
Ishii, Masao, Feely, Richard A., Rodgers, Keith B., Park, Geun-Ha, Wanninkhof, Rik, Sasano, D., Sugimoto, H., Cosca, Catherine E., Nakaoka, Shin-ichiro, Telszewski, Maciej, Nojiri, Yukihiro, Mikaloff Fletcher, Sara E., Niwa, Y., Patra, Prabir K., Valsala, V., Nakano, Hideyuki, Lima, Ivan D., Doney, Scott C., Buitenhuis, Erik T., Aumont, Olivier, Dunne, John P., Lenton, Andrew, Takahashi, Taro, Ishii, Masao, Feely, Richard A., Rodgers, Keith B., Park, Geun-Ha, Wanninkhof, Rik, Sasano, D., Sugimoto, H., Cosca, Catherine E., Nakaoka, Shin-ichiro, Telszewski, Maciej, Nojiri, Yukihiro, Mikaloff Fletcher, Sara E., Niwa, Y., Patra, Prabir K., Valsala, V., Nakano, Hideyuki, Lima, Ivan D., Doney, Scott C., Buitenhuis, Erik T., Aumont, Olivier, Dunne, John P., Lenton, Andrew, and Takahashi, Taro
- Abstract
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 709-734, doi:10.5194/bg-11-709-2014., Air–sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air–sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extratropics (18–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extratropics (44.5–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean-interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, interannual variations and mean seasonal variations of the regionally integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean-interior CO2 inversions are −0.47 ± 0.13 Pg C yr−1 in the North Pacific extratropics, +0.44 ± 0.14 Pg C yr−1 in the tropical Pacific, and −0.37 ± 0.08 Pg C yr−1 in the South Pacific extratropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extratropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., −0.49 ± 0.02 Pg C yr−1, M. Ishii acknowledges the Meteorological Research Institute’s priority research fund for ocean carbon cycle changes, JSPS Grant-in-Aid for Scientific Research (B) No. 22310017, and MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 24121003. Support for K. B. Rodgers came under awards NA17RJ2612 and NA08OAR4320752, and support for K. B. Rodgers and R. A. Feely from the NOAA Office of Oceanic and Atmospheric Research (OAR) through the office of Climate Observations (OCO), as well as by funds from NASA’s Research Opportunities in Space and Earth Sciences through award #NNX09AI13G. SMF’s contributions were funded through the NIWA National Centre for Atmosphere’s core research funding. S. C. Doney and I. Lima acknowledge support from US National Science Foundation award AGS-1048827. E. T. Buitenhuis acknowledges support from the EU (CarboChange, contract 264879). A. Lenton acknowledges support from the Australian Climate Change Science Program. T. Takahashi is supported by grants from the NOAA (NA08OAR4320754) and the Comer Science and Education Foundation (CSEF CP70).
- Published
- 2014
44. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom
- Author
-
Behrenfeld, Michael J., Doney, Scott C., Lima, Ivan D., Boss, Emmanuel S., Siegel, David A., Behrenfeld, Michael J., Doney, Scott C., Lima, Ivan D., Boss, Emmanuel S., and Siegel, David A.
- Abstract
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 27 (2013): 526–540, doi:10.1002/gbc.20050., Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates (r). For the subarctic Atlantic basin, analysis of annual cycles in r reveals that initiation of the annual blooming phase does not occur in spring after stratification surpasses a critical threshold but rather occurs in early winter when growth conditions for phytoplankton are deteriorating. This finding has been confirmed with in situ profiling float data. The objective of the current study was to test whether satellite-based annual cycles in r are reproduced by the Biogeochemical Element Cycling–Community Climate System Model and, if so, to use the additional ecosystem properties resolved by the model to better understand factors controlling phytoplankton blooms. We find that the model gives a similar early onset time for the blooming phase, that this initiation is largely due to the physical disruption of phytoplankton-grazer interactions during mixed layer deepening, and that parallel increases in phytoplankton-specific division and loss rates during spring maintain the subtle disruption in food web equilibrium that ultimately yields the spring bloom climax. The link between winter mixing and bloom dynamics is illustrated by contrasting annual plankton cycles between regions with deeper and shallower mixing. We show that maximum water column inventories of phytoplankton vary in proportion to maximum winter mixing depth, implying that future reductions in winter mixing may dampen plankton cycles in the subarctic Atlantic. We propose that ecosystem disturbance-recovery sequences are a unifying property of global ocean plankton blooms., This work was supported by the National Aeronautics and Space Administration, Ocean Biology and Biogeochemistry Program (grants NNX10AT70G, NNX09AK30G, NNX08AK70G, NNX07AL80G, and NNX08AP36A) and the Center for Microbial Oceanography Research and Education (C-MORE; grant EF-0424599), a National Science Foundation-supported Science and Technology Center.
- Published
- 2013
45. Impact of eddy–wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean
- Author
-
Anderson, Laurence A., McGillicuddy, Dennis J., Maltrud, Mathew E., Lima, Ivan D., Doney, Scott C., Anderson, Laurence A., McGillicuddy, Dennis J., Maltrud, Mathew E., Lima, Ivan D., and Doney, Scott C.
- Abstract
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 52 (2011): 80-94, doi:10.1016/j.dynatmoce.2011.01.003., Two eddy-resolving (0.1-degree) physical-biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and “thinnies” relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity., LAA and DJM gratefully acknowledge the support of NASA grant 07-CARBON07-17. SCD and IDL gratefully acknowledge support from the NSF Center for Microbial Oceanography, Research and Education (C-MORE; NSF EF-0424599).
- Published
- 2011
46. Response of ocean phytoplankton community structure to climate change over the 21st century : partitioning the effects of nutrients, temperature and light
- Author
-
Marinov, Irina, Doney, Scott C., Lima, Ivan D., Marinov, Irina, Doney, Scott C., and Lima, Ivan D.
- Abstract
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 3941-3959, doi:10.5194/bg-7-3941-2010., The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterb, While at WHOI, I. Marinov was supported by National Science Foundation (NSF) Grant ATM06-28582. I. Lima and S. Doney were supported by the Center for Microbial Oceanography, Research, and Education (CMORE) an NSF Science and Technology Center (EF-0424599).
- Published
- 2011
47. The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode waters
- Author
-
Levine, Naomi M., Doney, Scott C., Lima, Ivan D., Wanninkhof, Rik, Bates, Nicholas R., Feely, Richard A., Levine, Naomi M., Doney, Scott C., Lima, Ivan D., Wanninkhof, Rik, Bates, Nicholas R., and Feely, Richard A.
- Abstract
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892., The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space., We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
- Published
- 2011
48. Modeling deep ocean shipping noise in varying acidity conditions
- Author
-
Udovydchenkov, Ilya A., Duda, Timothy F., Doney, Scott C., Lima, Ivan D., Udovydchenkov, Ilya A., Duda, Timothy F., Doney, Scott C., and Lima, Ivan D.
- Abstract
Author Posting. © Acoustical Society of America, 2010. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 128 (2010): EL130–EL136, doi:10.1121/1.3402284., Possible future changes of ambient shipping noise at 0.1–1 kHz in the North Pacific caused by changing seawater chemistry conditions are analyzed with a simplified propagation model. Probable decreases of pH would cause meaningful reduction of the sound absorption coefficient in near-surface ocean water for these frequencies. The results show that a few decibels of increase may occur in 100 years in some very quiet areas very far from noise sources, with small effects closer to noise sources. The use of ray physics allows sound energy attenuated via volume absorption and by the seafloor to be compared., This work was supported by the Ocean Acoustics Program at the U.S. Office of Naval Research, Code 321, including an ONR Postdoctoral Fellowship award to the first author.
- Published
- 2010
49. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2
- Author
-
Nevison, Cynthia D., Mahowald, Natalie M., Doney, Scott C., Lima, Ivan D., van der Werf, Guido R., Randerson, James T., Baker, David F., Kasibhatla, Prasad S., McKinley, Galen A., Nevison, Cynthia D., Mahowald, Natalie M., Doney, Scott C., Lima, Ivan D., van der Werf, Guido R., Randerson, James T., Baker, David F., Kasibhatla, Prasad S., and McKinley, Galen A.
- Abstract
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G01010, doi:10.1029/2007JG000408., Seasonal and interannual variability in atmospheric carbon dioxide (CO2) concentrations was simulated using fluxes from fossil fuel, ocean and terrestrial biogeochemical models, and a tracer transport model with time-varying winds. The atmospheric CO2 variability resulting from these surface fluxes was compared to observations from 89 GLOBALVIEW monitoring stations. At northern hemisphere stations, the model simulations captured most of the observed seasonal cycle in atmospheric CO2, with the land tracer accounting for the majority of the signal. The ocean tracer was 3–6 months out of phase with the observed cycle at these stations and had a seasonal amplitude only ∼10% on average of observed. Model and observed interannual CO2 growth anomalies were only moderately well correlated in the northern hemisphere (R ∼ 0.4–0.8), and more poorly correlated in the southern hemisphere (R < 0.6). Land dominated the interannual variability (IAV) in the northern hemisphere, and biomass burning in particular accounted for much of the strong positive CO2 growth anomaly observed during the 1997–1998 El Niño event. The signals in atmospheric CO2 from the terrestrial biosphere extended throughout the southern hemisphere, but oceanic fluxes also exerted a strong influence there, accounting for roughly half of the IAV at many extratropical stations. However, the modeled ocean tracer was generally uncorrelated with observations in either hemisphere from 1979–2004, except during the weak El Niño/post-Pinatubo period of the early 1990s. During that time, model results suggested that the ocean may have accounted for 20–25% of the observed slowdown in the atmospheric CO2 growth rate., We acknowledge the support of NASA grant NNG05GG30G and NSF grant ATM0628472.
- Published
- 2010
50. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode
- Author
-
Lovenduski, Nicole S., Gruber, Nicolas, Doney, Scott C., Lima, Ivan D., Lovenduski, Nicole S., Gruber, Nicolas, Doney, Scott C., and Lima, Ivan D.
- Abstract
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900., We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (<35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years., This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.