1. Study on the Polymer Morphology and Electro-Optical Performance of Acrylate/Epoxy Resin-Based Polymer-Stabilized Liquid Crystals Based on Stepwise Photopolymerization.
- Author
-
Wu, Yishuo, Shang, Guangyang, Ma, Cong, Shi, Yingjie, Song, Zhexu, Wang, Peixiang, Gao, Yanzi, Wang, Qian, Yu, Meina, Xiao, Jiumei, and Zou, Cheng
- Subjects
- *
LIQUID crystal films , *POLYCONDENSATION , *POLYMERS , *LIGHT modulators , *ANCHORING effect - Abstract
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be controlled precisely. Herein, a novel polymer-stabilized liquid crystal film based on acrylate/epoxy resin is proposed, fabricated and the relationships between preparation process, polymer content, polymer morphology and electro-optical properties are studied. The in-situ photopolymerization of acrylate/epoxy resin liquid crystalline polymer is fulfilled using cation photo-initiator UV 6976. The distinct photopolymerization speed between acrylate and epoxy resin benefits the polymer morphology control, and with accurate containment of the polymerization process and polymer composition, the superior electro-optical properties at a higher polymer content are acquired. The polymer morphology and electro-optical properties are influenced by the polymer content and mass ratio between acrylate and epoxy resin. The best electro-optical properties among samples are attained by controlling the mass ratio between acrylate and epoxy resin to 1:1, integrating higher densities of scattering centers and lower anchoring effect. With higher polymer content, the strategy of increasing the mass ratio of E6M benefits the improvement of E-O properties for alleviating polymer density. This work provides insights to stepwise polymerization of liquid crystalline monomers and offers a fancy strategy for the preparation of novel liquid crystal dimming films. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF