1. Research on signalized intersection mixed traffic flow platoon control method considering Backward-looking effect
- Author
-
Feng, Binghao, Guo, Hui, Ma, Minghui, Wu, Yuepeng, Liang, Shidong, and Wang, Yansong
- Subjects
Physics - Applied Physics - Abstract
Connected and Autonomous Vehicles (CAVs) technology facilitates the advancement of intelligent transportation. However, intelligent control techniques for mixed traffic flow at signalized intersections involving both CAVs and Human-Driven Vehicles (HDVs) require further investigation into the impact of backward-looking effect. This paper proposes the concept of 1+n+1 mixed platoon considering the backward-looking effect, consisting of one leading CAV, n following HDVs, and one trailing CAV. The leading and trailing CAVs collectively guide the movement of intermediate HDVs at intersections, forming an optimal control framework for platoon-based CAVs at signalized intersections. Initially, a linearized dynamic model for the 1+n+1 mixed platoon is established and compared with a benchmark model focusing solely on controlling the lead vehicle. Subsequently, constraints are formulated for the optimal control framework, aiming to enhance overall intersection traffic efficiency and fuel economy by directly controlling the leading and trailing CAVs in the platoon. Finally, extensive numerical simulations compare vehicle throughput and fuel consumption at signalized intersections under different mixed platoon control methods, validating that considering both front and backward-looking effects in the mixed platoon control method outperforms traditional methods focusing solely on the lead CAV.
- Published
- 2024