1. Semantic Feature Decomposition based Semantic Communication System of Images with Large-scale Visual Generation Models
- Author
-
Fan, Senran, Bao, Zhicheng, Dong, Chen, Liang, Haotai, Xu, Xiaodong, and Zhang, Ping
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The end-to-end image communication system has been widely studied in the academic community. The escalating demands on image communication systems in terms of data volume, environmental complexity, and task precision require enhanced communication efficiency, anti-noise ability and semantic fidelity. Therefore, we proposed a novel paradigm based on Semantic Feature Decomposition (SeFD) for the integration of semantic communication and large-scale visual generation models to achieve high-performance, highly interpretable and controllable image communication. According to this paradigm, a Texture-Color based Semantic Communication system of Images TCSCI is proposed. TCSCI decomposing the images into their natural language description (text), texture and color semantic features at the transmitter. During the transmission, features are transmitted over the wireless channel, and at the receiver, a large-scale visual generation model is utilized to restore the image through received features. TCSCI can achieve extremely compressed, highly noise-resistant, and visually similar image semantic communication, while ensuring the interpretability and editability of the transmission process. The experiments demonstrate that the TCSCI outperforms traditional image communication systems and existing semantic communication systems under extreme compression with good anti-noise performance and interpretability., Comment: 13 pages, 13 figures
- Published
- 2024