1. Endpoint regularity of general Fourier integral operators
- Author
-
Zhu, Xiangrong and Li, Wenjuan
- Subjects
Mathematics - Classical Analysis and ODEs ,42B20, 35S30 - Abstract
Let $n\geq 1,0<\rho<1, \max\{\rho,1-\rho\}\leq \delta\leq 1$ and $$m_1=\rho-n+(n-1)\min\{\frac 12,\rho\}+\frac {1-\delta}{2}.$$ If the amplitude $a$ belongs to the H\"{o}rmander class $S^{m_1}_{\rho,\delta}$ and $\phi\in \Phi^{2}$ satisfies the strong non-degeneracy condition, then we prove that the following Fourier integral operator $T_{\phi,a}$ defined by \begin{align*} T_{\phi,a}f(x)=\int_{\mathbb{R}^{n}}e^{i\phi(x,\xi)}a(x,\xi)\widehat{f}(\xi)d\xi, \end{align*} is bounded from the local Hardy space $h^1(\mathbb{R}^n)$ to $L^1(\mathbb{R}^n)$. As a corollary, we can also obtain the corresponding $L^p(\mathbb{R}^n)$-boundedness when $1
- Published
- 2024